
Design and Analysis of Efficient Inter-core
Communication in GPUs

Mohamed Ibrahim∗, Hongyuan Liu∗, Onur Kayiran†, and Adwait Jog∗
∗College of William & Mary †Advanced Micro Devices, Inc.

Email: {maibrahim,hliu08}@email.wm.edu, onur.kayiran@amd.com, ajog@wm.edu

Graphics Processing Unit (GPU) architectures are becoming
an inevitable part of every computing system [1] because of
their ability to provide orders of magnitude faster execution.
They have become the default choice for accelerating inno-
vations in various fields [2]–[10] such as high-performance
computing (HPC), artificial intelligence, deep learning, and
virtual/augmented reality. Traditionally, GPUs have relied on
bandwidth to achieve high throughput [11]–[14]. The sources
of bandwidth have been local/shared caches, scratchpad, and
memory. Additionally, high bandwidth interconnect is required
to support the data flow between caches/memory and cores.

In this work, we focus on dynamically identifying and
exploiting an additional source of bandwidth in GPUs, which
we call as remote-core bandwidth. As also observed by previous
works [15]–[17], the source of this additional bandwidth stems
from inter-core locality. Specifically, the data required by one
of the GPU cores (i.e., L1 misses) can also be found in the
local L1 caches of other remote GPU cores. We find that this
additional source of bandwidth leads to significant improvement
in performance, however, can only be leveraged if an efficient
inter-core communication is enabled.

There are several challenges towards designing an efficient
inter-core communication, which have not been addressed by
prior works. In particular, this work systematically addresses
the following research questions: 1) How to determine which
data can also be found in remote cores, 2) How to determine
which cores have the data of the requester core, and 3) How
to get the data as soon as possible without congesting the
interconnect bandwidth?

Figure 1 shows the architectural diagram of our proposal. To
the best of our knowledge, this is the first work that addresses
these questions in a systematic manner. Specifically, this work
makes the following contributions:
• We observe a bi-modal distribution of inter-locality across

different instructions – some instructions use data that is shared
across cores and some do not. We leverage the observation
and use the program counter (PC) to predict which L1 misses
are likely to be found in the L1 caches of other cores (A).
• We develop a low-overhead mechanism that can locally

predict which cores are likely to have the shared data (B). It
is based on our key observation that the data required by a
core is generally shared across only a few cores, which can be
detected via sampling a limited number of core replies.
• We develop a novel two-level probing mechanism that

searches the identified cores in parallel while considering the
network bandwidth consumption (C). This ensures that the
searching overhead does not hamper inter-core locality as well
as performance.
• Our combined schemes take advantage of the unutilized

Selected

Cores

Forward

Probe

Outgoing

Probe

NACK

Request

Timeout

Request
Timeout

Handler

PC-based

Sharing

Predictor

Injection

Arbitration

Supplier-

based

Core

Selector

Two-level

Probing

L1 Cache

Read

Arbitration

Core Side

NoC Side

Router
Ejection

Queue Full Flag

Request NoC

Injection

M
S

H
R

Read

Request

Router

P
ro

b
e

 R
e
p

ly

Injection

Reply NoC

A
rb

itra
tio

n
 W

in
n

e
r

In
c

o
m

in
g

 P
ro

b
e

Probe

Handler

Read

Request

Shared Flag

Remote

Read

Flag

Own Leader/Scout

NACK

Flag

Read

Request

A

B

C

Fig. 1: Hardware organization of our proposal. The shaded
components are used for inter-core communication. The gray
components are newly added to support our proposal.

remote-core bandwidth, leading to 21% improvement (up to
40%) in performance if the data is a priori known to be shared,
and 10% (up to 26%) with our PC-based predictor. These
results are averaged across 11 diverse GPGPU applications
that exhibit inter-core locality and achieved at a modest area
overhead of 0.058 mm2 per core (determined by detailed RTL
synthesis). Additionally, our proposed schemes do not affect the
performance of other applications that possess low inter-core
locality.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers and members
of the Insight Computer Architecture Lab at the College of
William and Mary for their feedback. This material is based
upon work supported by the National Science Foundation (NSF)
grants (#1657336 and #1750667). This work was performed
in part using computing facilities at the College of William
and Mary which were provided by contributions from the NSF,
the Commonwealth of Virginia Equipment Trust Fund and
the Office of Naval Research. AMD, the AMD Arrow logo,
and combinations thereof are trademarks of Advanced Micro
Devices, Inc. Other product names used in this publication are
for identification purposes only and may be trademarks of their
respective companies.

REFERENCES

[1] “Top500 Supercomputer Sites - June 2015,”
http://www.top500.org/lists/2015/06/.

[2] A. Eklund, P. Dufort, D. Forsberg, and S. M. LaConte, “Medical image
processing on the gpu-past, present and future,” Medical Image Analysis,
2013.

[3] G. Pratx and L. Xing, “Gpu computing in medical physics: A review,”
Medical physics, vol. 38, 2011.

[4] S. S. Stone, J. P. Haldar, S. C. Tsao, W. mei W. Hwu, B. P. Sutton, and
Z.-P. Liang, “Accelerating advanced MRI reconstructions on GPUs,” J.
Parallel Distrib. Comput., vol. 68, 2008.

[5] NVIDIA, “How to harness big data for improving public health,”
http://www.govhealthit.com/news/how-harness-big-data-improving-
public-health.

[6] I. Schmerken, “Wall street accelerates options analysis with gpu technol-
ogy,” 2008-11-07)[2009-11-02]. http://wallstreetandtech.com/technology-
risk-management/showArticle.jhtml, 2009.

[7] NVIDIA, “Jp morgan speeds risk calculations with nvidia gpus,” 2011.
[8] NVIDIA, “Computational finance,” http://www.nvidia.com/object/ com-

putational finance.html.
[9] NVIDIA, “Researchers deploy gpus to build world’s largest artificial neu-

ral network,” http: //nvidianews.nvidia.com/Releases/Researchers-Deploy-
GPUs-to-Build-World-s-Largest-Artificial-Neural-Network-9c7.aspx.

[10] S. I. Park, S. P. Ponce, J. Huang, Y. Cao, and F. Quek, “Low-cost,
high-speed computer vision using nvidia’s cuda architecture,” in Applied

Imagery Pattern Recognition Workshop, 2008. AIPR’08. 37th IEEE.
IEEE, 2008.

[11] A. Jog, O. Kayiran, N. C. Nachiappan, A. K. Mishra, M. T. Kandemir,
O. Mutlu, R. Iyer, and C. R. Das, “OWL: Cooperative Thread Array
Aware Scheduling Techniques for Improving GPGPU Performance,” in
ASPLOS, 2013.

[12] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt, “Analyzing
CUDA workloads using a detailed GPU simulator,” in Performance
Analysis of Systems and Software, 2009. ISPASS 2009. IEEE International
Symposium on, April 2009.

[13] A. Jog, E. Bolotin, Z. Guz, M. Parker, S. W. Keckler, M. T. Kandemir,
and C. R. Das, “Application-aware Memory System for Fair and Efficient
Execution of Concurrent GPGPU Applications,” in GPGPU, 2014.

[14] A. Jog, O. Kayiran, T. Kesten, A. Pattnaik, E. Bolotin, N. Chatterjee,
S. Keckler, M. T. Kandemir, and C. R. Das, “Anatomy of GPU Memory
System for Multi-Application Execution,” in MEMSYS, 2015.

[15] G. Koo, H. Jeon, and M. Annavaram, “Revealing critical loads and
hidden data locality in gpgpu applications,” in 2015 IEEE International
Symposium on Workload Characterization (IISWC), Oct 2015.

[16] D. Li and T. M. Aamodt, “Inter-core locality aware memory scheduling,”
IEEE Computer Architecture Letters, vol. 15, Jan 2016.

[17] S. Dublish, V. Nagarajan, and N. Topham, “Cooperative caching for
gpus,” ACM Trans. Archit. Code Optim., vol. 13, Dec. 2016. [Online].
Available: http://doi.acm.org/10.1145/3001589

http://doi.acm.org/10.1145/3001589

	References

