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Graphics Processing Unit (GPU) architectures are becoming
an inevitable part of every computing system [1] because of
their ability to provide orders of magnitude faster execution.
They have become the default choice for accelerating inno-
vations in various fields [2]–[10] such as high-performance
computing (HPC), artificial intelligence, deep learning, and
virtual/augmented reality. Traditionally, GPUs have relied on
bandwidth to achieve high throughput [11]–[14]. The sources
of bandwidth have been local/shared caches, scratchpad, and
memory. Additionally, high bandwidth interconnect is required
to support the data flow between caches/memory and cores.

In this work, we focus on dynamically identifying and
exploiting an additional source of bandwidth in GPUs, which
we call as remote-core bandwidth. As also observed by previous
works [15]–[17], the source of this additional bandwidth stems
from inter-core locality. Specifically, the data required by one
of the GPU cores (i.e., L1 misses) can also be found in the
local L1 caches of other remote GPU cores. We find that this
additional source of bandwidth leads to significant improvement
in performance, however, can only be leveraged if an efficient
inter-core communication is enabled.

There are several challenges towards designing an efficient
inter-core communication, which have not been addressed by
prior works. In particular, this work systematically addresses
the following research questions: 1) How to determine which
data can also be found in remote cores, 2) How to determine
which cores have the data of the requester core, and 3) How
to get the data as soon as possible without congesting the
interconnect bandwidth?

Figure 1 shows the architectural diagram of our proposal. To
the best of our knowledge, this is the first work that addresses
these questions in a systematic manner. Specifically, this work
makes the following contributions:
• We observe a bi-modal distribution of inter-locality across

different instructions – some instructions use data that is shared
across cores and some do not. We leverage the observation
and use the program counter (PC) to predict which L1 misses
are likely to be found in the L1 caches of other cores ( A ).
• We develop a low-overhead mechanism that can locally

predict which cores are likely to have the shared data ( B ). It
is based on our key observation that the data required by a
core is generally shared across only a few cores, which can be
detected via sampling a limited number of core replies.
• We develop a novel two-level probing mechanism that

searches the identified cores in parallel while considering the
network bandwidth consumption ( C ). This ensures that the
searching overhead does not hamper inter-core locality as well
as performance.
• Our combined schemes take advantage of the unutilized
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Fig. 1: Hardware organization of our proposal. The shaded
components are used for inter-core communication. The gray
components are newly added to support our proposal.

remote-core bandwidth, leading to 21% improvement (up to
40%) in performance if the data is a priori known to be shared,
and 10% (up to 26%) with our PC-based predictor. These
results are averaged across 11 diverse GPGPU applications
that exhibit inter-core locality and achieved at a modest area
overhead of 0.058 mm2 per core (determined by detailed RTL
synthesis). Additionally, our proposed schemes do not affect the
performance of other applications that possess low inter-core
locality.
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