
Efficient and Fair Multi-programming in GPUs
via Effective Bandwidth Management
Haonan Wang∗, Fan Luo∗, Mohamed Ibrahim∗, Onur Kayiran†, and Adwait Jog∗

∗College of William and Mary †Advanced Micro Devices, Inc.
Email: {hwang07,fluo,maibrahim}@email.wm.edu, onur.kayiran@amd.com, adwait@cs.wm.edu

Abstract—
Managing the thread-level parallelism (TLP) of GPGPU ap-

plications by limiting it to a certain degree is known to be
effective in improving the overall performance. However, we
find that such prior techniques can lead to sub-optimal system
throughput and fairness when two or more applications are
co-scheduled on the same GPU. It is because they attempt to
maximize the performance of individual applications in isolation,
ultimately allowing each application to take a disproportionate
amount of shared resources. This leads to high contention in
shared cache and memory. To address this problem, we propose
new application-aware TLP management techniques for a multi-
application execution environment such that all co-scheduled
applications can make good and judicious use of all the shared
resources. For measuring such use, we propose an application-
level utility metric, called effective bandwidth, which accounts
for two runtime metrics: attained DRAM bandwidth and cache
miss rates. We find that maximizing the total effective band-
width and doing so in a balanced fashion across all co-located
applications can significantly improve the system throughput
and fairness. Instead of exhaustively searching across all the
different combinations of TLP configurations that achieve these
goals, we find that a significant amount of overhead can be
reduced by taking advantage of the trends, which we call
patterns, in the way application’s effective bandwidth changes
with different TLP combinations. Our proposed pattern-based
TLP management mechanisms improve the system throughput
and fairness by 20% and 2×, respectively, over a baseline where
each application executes with a TLP configuration that provides
the best performance when it executes alone.

Index Terms—Bandwidth Management, Fairness, GPUs

I. INTRODUCTION

Graphics Processing Units (GPUs) are becoming an in-
evitable part of most computing systems because of their ability
to provide orders of magnitude faster and energy-efficient
execution for many general-purpose applications [11], [13],
[36], [38], [39], [41], [46], [51], [52], [56], [60]. With each new
generation of GPUs, peak memory bandwidth and throughput
are growing at a steady pace [1], [62], and it is expected to con-
tinue as technology scales and new emerging high-bandwidth
memories become mainstream. To keep these growing compute
and memory resources highly utilized, GPU multi-programming
has recently received significant attention [2], [17], [24], [25],
[34], [35], [37], [43], [44], [45], [58], [61], [65], [67]. The
idea of co-locating two or more kernels1 (originating from the
same or different applications) has been shown to be beneficial
in terms of both GPU resource utilization and throughput [24],
[25], [43].

1In this paper, we evaluate workloads where concurrently executing kernels
originate from separate applications. Hence, we use the terms kernels and
applications interchangeably.

One of the major roadblocks in achieving the maximum
benefits of multi-application execution is the difficulty to design
mechanisms that can efficiently and effectively manage the
application interference in the shared caches and the main-
memory. Several researchers have proposed different architec-
tural mechanisms (e.g., novel resource allocation [7], [8], [9],
cache replacement [47], [48], and memory scheduling [24],
[25]), both in CPU and GPU domains, to address the negative
effects of the shared-resource application interference on the
system throughput and fairness. In fact, a recent surge of
works [27], [28], [30], [31], [50] considered the problem of
managing inter-thread cache/memory interference even for the
single GPU application execution. In particular, the techniques
that find the optimal thread-level parallelism (TLP) of a GPGPU
application were found to be very effective in improving
the GPU performance both for cache and memory-intensive
applications [30], [50]. The key idea behind these techniques is
to exploit the observation that executing a GPGPU application
with the maximum possible TLP does not necessarily result
in the highest performance. This is because as the number of
concurrently executing threads increases, the contention for
cache space and memory bandwidth also increases, which can
lead to sub-optimal performance. Therefore, many of the TLP
management techniques proposed to limit the TLP via limiting
the number of concurrently executing warps (or wavefronts2)
to a particular value.

Inspired by the benefits of such TLP management techniques,
this paper delves into the design of new TLP management tech-
niques that can significantly improve the system throughput and
fairness by modulating the TLP of each concurrently executing
application. To understand the scope of TLP modulation in
the context of multi-application execution, we analyzed three
different scenarios. First, both applications are executed with
their respective best-performing TLP (bestTLP), which are
found by statically profiling each application separately by
running it alone on the GPU. Note that these individual best
TLP configurations can also be effectively calculated using
previously proposed runtime mechanisms (e.g., DynCTA [30],
CCWS [50]). We call this multi-application TLP combination
as ++bestTLP. Second, both applications are executed with
their respective maximum possible TLP (maxTLP). We call this
multi-application TLP combination as ++maxTLP. Third, both
applications are executed with TLP such that they collectively
achieve the highest Weighted Speedup (WS) (or Fairness Index

2A wavefront is a group of threads, and the granularity at which hardware
scheduling is performed. It is referred to as a “warp” in NVIDIA terminology.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

++maxTLP optWS

N
o

rm
a
li
z
e
d

 W
S

0

0.5

1

1.5

2

2.5

++maxTLP optFI

N
o

rm
a
li
z
e
d

 F
I++bestTLP

++bestTLP

(b)(a)

Fig. 1: Weighted Speedup (WS) and Fairness Index (FI) for
BFS2_FFT. Evaluation methodology is described in Section II.

(FI))3 and defined as optWS (or optFI).
Figure 1 shows the WS and FI when BFS2 and FFT are exe-

cuted concurrently under these three aforementioned scenarios4.
The results are normalized to ++bestTLP. We find that there is
a significant difference in WS and FI between optimal (optWS
and optFI) and ++bestTLP combinations, which suggests that
blindly using the bestTLP configuration for each application
in the context of multi-application execution is a sub-optimal
choice. It is because each application in the ++bestTLP or
++maxTLP scenario consumes disproportionate amounts of
shared resources as it assumes no other application is co-
scheduled. That leads to high cache and memory contention.
Contributions. To our knowledge, this is the first work that
performs a detailed analysis of the TLP management techniques
in the context of multi-application execution in GPUs and shows
that new TLP management techniques, if developed carefully,
can significantly boost the system throughput and fairness. In
this context, our goal is to develop techniques that can find the
optimal TLP combination that allows a judicious and good use
of all the available shared resources (thereby reducing cache and
memory bandwidth contention, and improving WS and FI). To
measure such use, we propose a new metric, effective bandwidth
(EB), which calculates the effective shared resource usage for
each application considering its private and shared cache miss
rates and memory bandwidth consumption. We find that a TLP
combination that maximizes the total effective bandwidth across
all co-located applications while providing a good balance
of individual applications’ effective bandwidth leads to high
system throughput (WS) and fairness (FI). Instead of incurring
the high overheads of an exhaustive search across all the
different combinations of TLP configurations that achieve these
goals, we propose pattern-based searching (PBS) that cuts
down a significant amount of overheads by taking advantage
of the trends (which we call patterns) in the way application’s
effective bandwidth changes with different TLP combinations.
Results. Our newly proposed PBS schemes improve the system
throughput (WS) and fairness (FI) by 20% and 2×, respectively
over ++bestTLP, and 10% and 1.44×, respectively over the
recently proposed TLP modulation and cache bypassing scheme
(Mod+Bypass [35]) for multi-application execution for GPUs.
Also, our PBS schemes are within 3% and 6% of the optimal
TLP combinations: optWS and optFI, respectively for the
evaluated 50 two-application workloads.

3We find this combination by profiling 64 different combinations of TLP
and picking the one that provides the best WS (or FI).

4BFS2 FFT is one of the representative workloads, which demonstrates the
scope of the problem. Other workloads are discussed in Section VI.

II. BACKGROUND AND EVALUATION METHODOLOGY

A. Baseline Architecture

We consider a generic baseline GPU architecture consist-
ing of multiple cores (also called as compute units (CUs)
or streaming multiprocessors (SMs) in AMD and NVIDIA
terminology, respectively.). Each core has a private L1 cache.
An on-chip interconnect connects the cores to the memory
controllers (MCs). Each MC is attached to a slice of L2
cache. We evaluate our proposed techniques on MAFIA [25], a
GPGPU-Sim [4] based framework that can execute two or more
applications concurrently. The memory performance model is
validated across several GPGPU workloads on an NVIDIA
K20m GPU [4], [25]. The key parameters of the GPU (Table I)
are faithfully simulated.

TABLE I: Key configuration parameters of the simulated GPU
configuration. See GPGPU-Sim v3.2.2 [16] for the complete list.

Core Features 1400MHz core clock, 30 cores, SIMT width = 32 (16 × 2)
Resources / Core 32KB shared memory, 32684 registers

Max. 1536 threads (48 warps, 32 threads/warp)
L1 Caches / Core 16KB 4-way L1 data cache

12KB 24-way texture cache, 8KB 2-way constant cache,
2KB 4-way I-cache, 128B cache block size

L2 Cache 16-way 256 KB/memory channel (1536 KB in total)
128B cache block size

Features Memory coalescing and inter-warp merging enabled,
immediate post dominator based branch divergence handling

Memory Model 6 GDDR5 Memory Controllers (MCs), FR-FCFS scheduling
16 DRAM-banks, 4 bank-groups/MC, 924 MHz
memory clock Global linear address space is
interleaved among partitions in chunks of 256 bytes [15]
Hynix GDDR5 Timing [22], tCL = 12, tRP = 12,
tRAS = 28, tCCD = 2, tRCD = 12, tRRD = 6

Interconnect 1 crossbar/direction (30 cores, 6 MCs),
1400MHz interconnect clock, islip VC and switch allocators

Multi-application execution. Recent GPUs by AMD [3] and
NVIDIA [42] support the execution of multiple tasks/kernels.
This advancement led to a large body of work in GPU
multiprogramming [2], [17], [24], [25], [34], [35], [37], [43],
[44], [58], [65], [67]. Execution of multiple tasks can potentially
increase GPU utilization and throughput [2], [24], [43], [59],
[64]. While it is possible to execute different independent
kernels from the same application concurrently, in this paper,
we execute different applications simultaneously. To understand
how these applications interfere in the shared memory system,
each application is mapped to an exclusive set of cores and
allowed to use resources beyond the cores (e.g., L2, DRAM).
We allocate an equal number of cores to each concurrently
executing application. Sensitivity to different core and L2 cache
partitioning techniques is discussed in Section VI-D.
TLP configurations. We assume that different TLP configu-
rations are implemented at the warp granularity via statically
or dynamically limiting the number of actively executing
warps [50]. Table II lists different TLP configurations that
are evaluated in the paper. The maximum value of TLP is 24
as the total number of possible warps on a core is 48 and
there are two warp schedulers per core. The baseline GPU uses
the best-performing TLP (bestTLP) when it executes only one
application at a time.

B. Evaluation Methodology

All evaluated metrics are summarized in Table III.

TABLE II: List of evaluated TLP configurations.

Acronym Description
maxTLP Single application is executed with the maximum possible value of TLP.

++maxTLP Two or more applications are executed concurrently with their own
respective maxTLP configurations.

bestTLP Single application is executed with the best-performing TLP.
++bestTLP Two or more applications are executed concurrently with their own

respective bestTLP configurations.
DynCTA Single application is executed with DynCTA.

++DynCTA Two or more applications are executed concurrently with each one using
DynCTA.

optWS Two or more applications are executed concurrently with their own
TLP configurations such that Weighted-speedup (WS) is maximized.

optFI Two or more applications are executed concurrently with their own
TLP configurations such that Fairness Index (FI) is maximized.

optHS Two or more applications are executed concurrently with their own
TLP configurations such that Harmonic Weighted-speedup (HS)
is maximized.

TABLE III: List of evaluated metrics.

Acronym Description
SD Slowdown. SD = IPC-Shared/IPC-bestTLP.
WS Weighted Speedup. WS = SD-1 + SD-2 .
FI Fairness Index. FI = Min(SD-1/SD-2, SD-2/SD-1)
HS Harmonic Speedup. HS = 1/(1/SD-1 + 1/SD-2).
BW Attained Bandwidth from Main Memory.

CMR Combined Miss Rate (MR). CMR = L1MR × L2MR.
EB Effective Bandwidth. EB = BW/CMR.

EB-WS EB-based Weighted Speedup. EB-WS = EB-1 + EB-2 .
EB-FI EB-based Fairness Index. EB-FI = Min(EB-1/EB-2, EB-2/EB-1).
EB-HS EB-based Harmonic Speedup. EB-HS = 1/(1/EB-1 + 1/EB-2).

Performance- and Fairness-related Metrics. We report
Weighted Speedup (WS) [43], [55] and Fairness Index (FI) [25]
to measure system throughput and fairness (imbalance of
performance slowdowns), respectively. Both metrics are based
on individual application slowdowns (SDs) in the workload,
where SD is defined as the ratio of performance (IPC) achieved
in the multi-programmed environment (IPC-Shared) to the case
when it runs alone on the same set of cores with bestTLP (IPC-
Alone). The maximum value of WS is equal to the number of
applications in the workload assuming there is no constructive
interference among applications. An FI value of 1 indicates
a completely fair system. We also report Harmonic Weighted
Speedup (HS), which provides a balanced notion of both system
throughput and fairness in the system [33]. In this paper, we
refer to all these metrics as SD-based metrics.
Auxiliary Metrics. We consider Attained Bandwidth (BW),
which is defined as the amount of DRAM bandwidth that is
useful for the application (i.e., the useful data transferred over
the DRAM interface) normalized to the theoretical peak value
of the DRAM bandwidth. We also consider Combined Miss
Rate (CMR), which is defined as the product of L1 and L2
miss rates. Note that BW and L1/L2 miss rates are separately
calculated for each application even in the multi-application
scenario. The Effective Bandwidth (EB) of an application is
the ratio of BW to CMR. It gauges the rate of data delivery to
cores by considering how the bandwidth achieved from DRAM
is amplified by the caches (e.g., a miss rate of 50% effectively
doubles the bandwidth delivered.). We append the application
ID (or application’s abbreviation (Table IV)) to the end of
these metrics to denote per-application metrics (e.g., CMR-1
is the combined miss rate for application 1 and EB-BLK is
the effective bandwidth for CUDA Blackscholes Application).
EB-based Metrics. In addition to standard SD-based metrics

TABLE IV: GPGPU application characteristics: (A)
IPC@bestTLP: The value of IPC when the application executes with
bestTLP, (B) EB@bestTLP: The value of the effective bandwidth
when the application executes with bestTLP, (C) Group information:
Each application is categorized into one of the four groups (G1-G4)
based on their individual EB values.

Abbr. IPC EB Group Abbr. IPC EB Group
LUD [5] 40 0.13 G1 LIB [40] 211 0.93 G2
NW [5] 31 0.21 G1 LUH [29] 87 1.08 G2

HISTO [57] 471 0.29 G1 SRAD [5] 229 1.19 G3
SAD [57] 651 0.31 G1 CONS [40] 397 1.35 G3
QTC [6] 26 0.59 G2 FWT [40] 195 1.41 G3
RED [6] 180 0.70 G2 BP [5] 580 1.42 G3

SCAN [6] 151 0.72 G2 CFD [5] 95 1.49 G3
BLK [40] 457 0.79 G2 TRD [6] 238 1.67 G3

HS [5] 578 0.79 G2 FFT [57] 261 1.77 G4
SC [5] 173 0.80 G2 BFS2 [40] 18 1.78 G4

SCP [40] 307 0.85 G2 3DS 457 2.19 G4
GUPS 9 0.87 G2 LPS [40] 410 2.20 G4

JPEG [40] 330 0.92 G2 RAY [40] 328 3.12 G4

that we finally report, our proposed techniques take advantage
of runtime EB-based metrics. These metrics are calculated in
a similar fashion as SD-based metrics with the difference that
they use EB instead of SD. For example, EB-WS is defined
as the sum of EB-1 and EB-2. More details are in Table III
and in upcoming sections.
Application suites. For our evaluations, we use a wide range
of GPGPU applications with diverse memory behavior in terms
of cache miss rates and memory bandwidth. These applications
are chosen from Rodinia [5], Parboil [57], CUDA SDK [4],
and SHOC [6] based on their effective bandwidth (EB) values
such that there is a good spread (from low to high – see
Table IV). In total, we study 50 two-application workloads
(spanning 26 single applications) that exhibit the problem of
multi-application cache/memory interference.

III. ANALYZING APPLICATION RESOURCE CONSUMPTION

In this section, we first discuss the effects of TLP on
various single-application metrics followed by a discussion
on succinctly quantifying those effects.

A. Understanding Effects of TLP on Resource Consumption
GPU applications achieve significant speedups in perfor-

mance by exploiting high TLP. Therefore, GPU memory has to
serve a large number of memory requests originating from
many warps concurrently executing across different GPU
cores. Consequently, memory bandwidth can easily become
the most critical performance bottleneck for many GPGPU
applications [14], [18], [25], [28], [30], [49], [62], [63]. Many
prior works have proposed to address this bottleneck by
improving the bandwidth utilization and/or by effectively using
both private and shared caches in GPUs via modulating the
available TLP [30], [50]. These modulation techniques strive
to improve performance via finding the level of TLP such
that it is neither too low so as not to under-utilize the on/off-
chip resources nor too high so as not to cause too much
contention in caches and memory leading to poor cache miss
rates and row-buffer locality, respectively. To understand this
further, consider Figure 2 (a–c), which shows the impact of
the change in TLP (i.e., different levels of TLP) for BFS2 on
IPC, BW, and CMR. These metrics are normalized to that of
bestTLP (best performing TLP for BFS2 is 4). We observe

0

0.5

1

1.5

2

2.5

3

1 2 4 8 12 16 20 24

N
o

rm
a

li
z
e

d
 B

W

TLP

0

0.5

1

1.5

2

2.5

3

1 2 4 8 12 16 20 24

N
o

rm
a

li
z
e

d
 C

M
R

TLP

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 12 16 20 24

N
o

rm
a

li
z
e

d
 E

B

TLP

(c) (d)

(b)

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 12 16 20 24

N
o

rm
a

li
z
e

d
 I
P

C

TLP

(a)

bestTLP bestTLP

bestTLP bestTLP

Fig. 2: Effect of TLP on performance and other metrics for BFS2.

that with the initial increase in TLP, both BW and IPC start to
increase rapidly. However, at higher TLP, the increase in CMR
starts to negate the benefits of high BW, ultimately leading
to decrease in performance. For example, when TLP limit
increases from 4 to 24, BW increases by 2.7×, but CMR also
increases by 2.9× leading to drop in performance. In such
cases, the increase in TLP not only hampers performance but
also consumes unnecessary memory bandwidth. In summary,
we conclude that the changes in performance with different
TLP configurations are directly related to changes in cache
miss-rate and memory bandwidth resource consumption.

B. Quantifying Resource Consumption

To measure such resource consumption via a single combined
metric, we introduce a new metric called as effective bandwidth
(EB). It is defined as the ratio of bandwidth to miss rate, and is
calculated based on the level of hierarchy under consideration
as depicted in Figure 3. For example, the value of EB observed
by L1 (B) is defined as the ratio of BW (A) to the L2 miss
rate. Similarly, the value of EB observed by the core (C) is
defined as the ratio of EB observed by L1 (B) to the L1 miss
rate. This value is also equivalent to the ratio of BW (A) to
CMR. The EB observed by the core essentially measures how
well the DRAM bandwidth is utilized. It also considers the
usefulness of the caches in amplifying the performance impact
of the attained DRAM bandwidth, where the amplification is
based on the combined miss rate. If the CMR is 1, it implies
that caches are not useful and cores will obtain the same return
bandwidth that is attained from the DRAM. Therefore, EB is
equal to BW for cache insensitive applications (e.g., BLK).
On the other hand, a lower CMR would allow cores to obtain
more return bandwidth than what is attained from the DRAM,
which is the case for cache-sensitive applications (e.g., BFS2).
In an ideal case, when combined miss rate is zero, the effective
bandwidth observed by the core would be equal to the L1
cache bandwidth of the GPU system5.

5It is under the assumption that the return packets from the memory system
do not bypass the L1 cache.

Core L1 L2 DRAM

BWBW/L2MRBW/(L1MR*L2MR) Effective

Bandwidth

ABC

= BW/CMR

Fig. 3: Effective Bandwidth at different levels of the hierarchy.
For brevity, we show only one core (with attached L1 cache) and
one L2 cache partition.

Connecting back to Figure 2, we observe that effective
bandwidth observed by the core (C) and performance closely
follow each other (Figure 2(d)) with changes in TLP. This
concludes that the impact of changes in TLP on performance
can be accurately estimated by directly measuring only the
changes in EB, without the need to consider any architecture-
independent parameters such as compute-to-memory ratio of
an application. Although we demonstrate the validity of these
conclusions for BFS2, we verified that these conclusions hold
true for all the considered applications6 listed in Table IV.

To substantiate the conclusions analytically, we revisit our
prior work [25], which showed that GPU performance (IPC)
is proportional to the ratio of BW to L2 misses per instruction
(MPI),

IPC ∝
BW

L2MPI
(1)

which in turn is proportional to the ratio of BW to rm×CMR,
where rm is the ratio of memory instructions to the total number
of instructions. rm is an application-level property7. Therefore,
IPC is proportional to the ratio of EB to rm, where

IPC ∝
BW

rm × L2MR× L1MR
∝

BW

rm × CMR
∝

EB

rm
(2)

We conclude that EB is able to effectively measure the good
and judicious use of cache and memory bandwidth resources
and is optimal at the bestTLP configuration.

IV. MOTIVATION AND GOALS

As the total shared resources are limited, understanding
how these resources should be allocated to the concurrent
applications for maximizing system throughput and fairness is
a challenging problem. To this end, we consider the TLP of each
application as a knob to control its shared resource allocation.
Although previously proposed TLP modulation techniques (e.g.,
DynCTA [30] and CCWS [50]) have been shown to be effective
in optimizing TLP for single-application execution scenarios,
they rely only on different kinds of per-core heuristics (e.g.,
latency tolerance, IPC, cache/memory contention) and do not
consider the shared resource consumption of co-scheduled
applications. In other words, each application under such TLP
configurations (including bestTLP) attempts to maximize its
own effective bandwidth, ultimately taking disproportionate
amount of shared resources. This causes too much contention

6Applications that make heavy use of the software-managed scratchpad
memory observe higher EB at the cores due to additional bandwidth from
the scratchpad memory. Because the scratchpad memory is not susceptible to
contention due to high TLP in our evaluation setup, our calculations do not
consider the bandwidth provided by the scratchpad to the core.

7Arithmetic intensity (i.e., ratio between compute to memory instructions)
of an application is equal to (1-rm)/rm.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

+
+

b
e
s

tT
L

P
o

p
tW

S
o

p
tF

I
o

p
tI

T

+
+

b
e
s

tT
L

P
o

p
tW

S
o

p
tF

I
o

p
tI

T

+
+

b
e
s

tT
L

P
o

p
tW

S
o

p
tF

I
o

p
tI

T

+
+

b
e
s

tT
L

P
o

p
tW

S
o

p
tF

I
o

p
tI

T

+
+

b
e
s

tT
L

P
o

p
tW

S
o

p
tF

I
o

p
tI

T

+
+

b
e
s

tT
L

P
o

p
tW

S
o

p
tF

I
o

p
tI

T

+
+

b
e
s

tT
L

P
o

p
tW

S
o

p
tF

I
o

p
tI

T

+
+

b
e
s

tT
L

P
o

p
tW

S
o

p
tF

I
o

p
tI

T

+
+

b
e
s

tT
L

P
o

p
tW

S
o

p
tF

I
o

p
tI

T

+
+

b
e
s

tT
L

P
o

p
tW

S
o

p
tF

I
o

p
tI

T

3DS_TRD BFS2_FFT BLK_BFS2 BLK_TRD FFT_TRD FWT_TRD JPEG_CFD JPEG_LIB JPEG_LUH SCP_TRD

S
u

m
 o

f
S

D

SD-1 SD-2

0
0.5

1
1.5

2
2.5

3

+
+

b
e
s

tT
L

P
o

p
tW

S
o

p
tF

I
o

p
tI

T

+
+

b
e
s

tT
L

P
o

p
tW

S
o

p
tF

I
o

p
tI

T

+
+

b
e
s

tT
L

P
o

p
tW

S
o

p
tF

I
o

p
tI

T

+
+

b
e
s

tT
L

P
o

p
tW

S
o

p
tF

I
o

p
tI

T

+
+

b
e
s

tT
L

P
o

p
tW

S
o

p
tF

I
o

p
tI

T

+
+

b
e
s

tT
L

P
o

p
tW

S
o

p
tF

I
o

p
tI

T

+
+

b
e
s

tT
L

P
o

p
tW

S
o

p
tF

I
o

p
tI

T

+
+

b
e
s

tT
L

P
o

p
tW

S
o

p
tF

I
o

p
tI

T

+
+

b
e
s

tT
L

P
o

p
tW

S
o

p
tF

I
o

p
tI

T

+
+

b
e
s

tT
L

P
o

p
tW

S
o

p
tF

I
o

p
tI

T

3DS_TRD BFS2_FFT BLK_BFS2 BLK_TRD FFT_TRD FWT_TRD JPEG_CFD JPEG_LIB JPEG_LUH SCP_TRD

S
u

m
 o

f
E

B

EB-1 EB-2

(a)

(b)

Fig. 4: Effect of different TLP combinations on application: a) slowdown and b) effective bandwidth.

in caches and memory, ultimately hampering the system-wide
metrics such as system throughput and fairness.

To understand this further, consider Figure 4(a), which shows
the WS of 10 representative workloads under ++bestTLP and
opt TLP combinations8. WS for each two-application workload
is split into its respective slowdowns for each application (SD-1
and SD-2). We find that there is a significant gap between
++bestTLP and optWS for all workloads. For example, in
BFS2_FFT and BLK_BFS2, this difference is 29% and 21%,
respectively. In terms of fairness, the gap is up to 2× (observed
from the imbalance between SD values in ++bestTLP compared
to balanced values in optFI) in BFS2_FFT. We conclude that
new TLP management techniques are needed to close this
system throughput and fairness gap.
Analysis of Weighted Speedup. We find that a TLP manage-
ment scheme that optimizes for EB-based metrics is useful in
improving system performance and fairness. To understand this
analytically, we first focus on system throughput (weighted
speedup) via equations 3, 4, and 5. First, let us define IPC alone
ratio (IPCAR) and EB alone ratio (EBAR) of two applications
(App-1 and App-2) when each of them separately execute alone
on the GPU:

IPCAR =
IPCAlone−1
IPCAlone−2

EBAR =
EBAlone−1
EBAlone−2

(3)

Next, as WS is the sum of slowdowns of co-scheduled
applications, we derive the following Equation:

WS =
IPCShared−1
IPCAlone−1

+
IPCShared−2
IPCAlone−2

WS ∝ IPCShared−1 + IPCShared−2 × IPCAR

(4)

Finally, with the help of Equation 2,

WS ∝ EBShared−1 + EBShared−2 × EBAR (5)

We observe that WS is a function of instruction through-
put (sum of IPCs of individual applications) and also a

8The opt combinations are chosen via an exhaustive search of 64 different
TLP combinations.

function of EB-WS (sum of EBs of individual applica-
tions). However, maximizing IT or EB-WS will lead to sub-
optimal WS, if IPCAR and EBAR are much greater than 1.

0

10

20

30

40

50

60

70

80

A
lo

n
e

 R
a

ti
o

 (
A

R
)

Workloads

IPC_AR EB_ARIPCAR EBAR

Fig. 5: IPCAR vs. EBAR

This is due to the bias caused by
alone ratios (IPCAR and EBAR)
towards one of the co-scheduled
applications. On average across
all possible two-application work-
loads formed using the evalu-
ated 26 applications, we find
that EBAR is much lower than
IPCAR, as shown in Figure 59.
Therefore, we choose EB to opti-
mize system-wide metrics.

To substantiate this claim quan-
titatively, Figure 4(b) shows EB-WS for each workload along
with its respective EBs for each application (EB-1 and EB-2).
We make the following two observations:
• Observation 1: The TLP combination that provides the

highest sum of EB (EB-WS) provides also the highest system
throughput (WS). This trend is present in almost all evaluated
workloads (a few exceptions are discussed in Section VI). We
find this observation interesting as it means that optimizing
for EB-WS is likely to improve WS (SD-based metric) as
discussed earlier via Equation 5. Also, EB-WS metric does
not incorporate any alone-application information making it
easier to calculate directly in a multi-application environment.
• Observation 2: The TLP combination (optIT) that pro-

vides the highest instruction throughput (IT) (i.e., sum of IPCs
across all the concurrent applications) does not always provide
the highest WS and FI (e.g., in BFS2_FFT, BLK_BFS2). It
implies that a mechanism that attempts to maximize IT may
not be optimal to improve system throughput as analytically
demonstrated earlier.

9As the alone ratio bias can be towards any one of the co-scheduled
applications, we show max(M1/M2, M2/M1), where M is IPCAR or EBAR.

Analysis of Fairness. Extending the above discussion for
fairness, we also find that EB-FI correlates well with the SD-
based FI (i.e., differences in SDs in a workload is correlated
with those of EBs.). Therefore, a careful balance of effective
bandwidth allocation among co-scheduled applications can lead
to higher fairness in the system (as demonstrated by optFI in
Figure 4(b)). However, there are a few outliers (e.g., BLK_TRD)
(i.e., the difference between EB-1 and EB-2 is much larger than
that of SD-1 and SD-2 breakdowns). The main reason behind
these outliers is EBAR, which can still be larger than one
(Figure 5) leading to a bias towards one of the applications. To
reduce the outliers and increase the correlation between EB-FI
and SD-FI, we appropriately scale the EB with the alone EB
information of each application. These scaling-factors either
can be supplied by the user or can be calculated at runtime.
In the former case, each application uses the average value
of alone EB for the group it belongs to (see Table IV). In
the latter case, each application uses the value of EB when
it executes alone and uses bestTLP. As we cannot get this
information unless we halt the other co-running applications,
we approximate it by executing the co-runners with the least
amount of TLP (i.e., 1) so that they induce the least amount
of interference possible. Note that in our evaluated workloads,
we did not find the necessity of using these scaling factors
while optimizing WS because of the limited number of outliers
(Section VI). However, we do use them to further optimize
fairness and harmonic weighted speedup.

In summary, we conclude that maximizing the total effective
bandwidth (EB-WS) for all the co-runners is important for
improving system throughput (WS). Further, a better balance
between the effective bandwidth (determined by EB-FI) of the
co-scheduled applications is required for higher fairness (FI).

V. PATTERN-BASED SEARCHING (PBS)
In this section, we provide details on the proposed TLP man-

agement techniques for multi-application execution followed
by the implementation details and hardware overheads.

A. Overview
Our goal is to find the TLP combinations that would optimize

different EB-based metrics. A naive method to achieve this goal
is to periodically take samples for all the possible TLP combi-
nations over the course of workload execution and ultimately
choose the combination that satisfies the optimization criteria.
However, that would incur significant runtime overheads in
terms of performance. Instead of high-overhead naive searching,
we take advantage of the following guidelines and patterns
to minimize the search space for optimizing the EB-based
metrics.
Guideline-1. The EB-based metrics are sub-optimal when
a particular TLP combination leads to under-utilization of
resources (e.g., DRAM bandwidth). Therefore, for obtaining
the optimal system throughput, it is important to choose a TLP
combination that does not under-utilize the shared resources.
Guideline-2. When increasing an application’s TLP level, its
EB starts to drop only when the increase in its BW can no
longer compensate for the increase in its CMR (i.e., EB at its
inflection point). Therefore, it is important to choose a TLP
combination that would not overwhelm resources as it is likely

to cause sharp drops in one or all applications’ EB, leading
to inferior system throughput and fairness.
Patterns. In all our evaluated workloads, we find that when
resources in the system are sufficiently utilized, distinct
inflection points emerge in EB-based metrics. These inflection
points tend to appear consistently at the same TLP level of an
application, regardless of the TLP levels of the other co-running
application. We name this consistency of the inflection points
as patterns. Moreover, the sharpest drop in EB-based metrics is
usually attributed to one of the co-running applications, namely
the critical application.
High-level Searching Process. We utilize the observed pat-
terns to reduce the search space of finding the optimal TLP
combination. We first ensure that the TLP values are high
enough to sufficiently utilize the shared resources. Subsequently,
we find the critical application and its TLP value that leads
to the inflection point in the EB-based metrics. Once the TLP
of the critical application is fixed, the TLP value of the non-
critical application is tuned to further improve the EB-based
metric. Because of the existence of the patterns, we expect
that the critical application’s TLP still leads to a inflection
point regardless of the changes in TLP of the non-critical
application. This final stage of tuning is similar to the one
application scenario, where tuning of TLP is performed for
optimizing the effective bandwidth (Section III-A). We find
that this searching process based on the patterns (i.e., pattern-
based searching (PBS)) is an efficient way (reduces the number
of TLP combinations to search) to find the appropriate TLP
combination targeted for optimizing a specific EB-based metric.
In this context, we propose three PBS mechanisms: PBS-WS,
PBS-FI, and PBS-HS to optimize for Weighted Speedup (WS),
Fairness Index (FI), and Harmonic Weighted Speedup (HS),
respectively.

B. Optimizing WS via PBS-WS

As per our discussions in Section IV, our goal is to find the
TLP combination that would lead to the highest total effective
bandwidth (EB-WS). We describe this searching process for
two-application workloads, however, it can be trivially extended
for three or more application workloads as described later in
Section VI-D.

Consider Figure 6(a) that shows the EB-WS for the workload
BLK_TRD. We show individual EB values of each application,
that is, EB-BLK and EB-TRD in Figure 6(b). The pattern
demonstrating sharp drop in EB-WS (i.e., inflection points)
is in the shaded region. We follow the high-level searching
process described earlier. First, when both applications execute
with TLP values of 1, the EB-WS is low (0.55) due to low
DRAM bandwidth utilization (29%, not shown). Therefore, as
per Guideline-1, this TLP combination is not desirable.

Second, we focus on finding the critical application. The
process is as follows. We execute each application with TLP
of 1, 2, 4, 8 etc. by keeping the TLP of the other application
to be fixed at 24. The TLP value of 24 ensures that the GPU
system is not under-utilized. This process is repeated for every
application in the workload. The application that exhibits a
larger drop in EB-WS is critical and its TLP is fixed. We decide
BLK as the critical application as it affects EB-WS the most

(b)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 4 8 12 16 20 24

E
B

-T
R

D

E
B

-B
L

K

TLP-BLK

0.5

0.7

0.9

1.1

1.3

1.5

1 2 4 8 12 16 20 24

E
B

-W
S

TLP-BLK

(a)

++bestTLP

optWS

BLK X TRD Overall

TLP-TRD = 1 TLP-TRD = 2 TLP-TRD = 4

TLP-TRD = 8 TLP-TRD = 24

Fig. 6: Illustrating the patterns observed in BLK_TRD.

(Figure 6(a)) – the sharp drop in EB-WS after TLP-BLK=2 is
prominent.

Third, the next step is to tune the TLP for the non-critical
application to reduce the contention and further improve the
EB-WS. The searching for TLP of the non-critical application
is stopped when the EB-WS no more increases. Therefore,
in our example, after fixing TLP-BLK to 2, we start tuning
the TLP-TRD to further optimize the EB-WS. The searching
process stops at the TLP-TRD = 8, leading to the optimal TLP
combination to be (2,8), which is also the optWS10. As evident,
the whole search process requires only a few samples and does
not require an exhaustive search across all combinations.

C. Optimizing Fairness via PBS-FI
In this scheme, our goal is to find a TLP combination that

would lead to a better balance between the individual effective
bandwidth of the co-scheduled applications. Therefore, we
strive to find the TLP combination that would lead to the
highest EB-FI. For all the evaluated workloads, we find that
a pattern also exists in their EB-FI curves (not shown). As
a result, we are able to first find the critical application that
affects the EB-FI the most, followed by tuning the TLP of
other non-critical applications.

To intuitively understand the searching process, we study the
EB-difference between two applications and plot this difference
against TLP to understand the trends in them. A lower absolute
value of the difference indicates a fairer system (higher EB-FI)
as the EB values of applications are similar (see Section IV).

Consider the example of BLK_TRD in the context of fairness.
Figure 7 (a) and (b) show two different views of the same data
related to EB-difference – one being TLP-BLK as x-axis and
curves representing iso-TLP-TRD states (Figure 7 (a)), and
vice versa for the second view (Figure 7 (b)). We examine
the effect on EB-difference when the TLP of a particular
application changes with the TLP of the other application fixed
at 24. This process is repeated for every application in the
workload. The application that causes larger changes in EB-
difference is considered to be critical. For example, in Figure 7
(a) and (b), BLK is more critical than TRD because changes in
TLP-BLK of BLK induces larger changes in the EB-difference,
when TLP-TRD is kept constant at 24 (Figure 7 (a)). We then
keep the critical application’s TLP fixed (e.g., TLP-BLK is 2),

10There is a possibility that this final process of tuning can free up just
enough resources so that the infection point of EB-WS shifts to the right (i.e.,
pattern does not hold), leading to a sub-optimal TLP combination. However,
we never observed such a scenario in our experiments.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 4 8 12 16 20 24

E
B

-H
S

TLP-TRD

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 4 8 12 16 20 24

E
B

-H
S

TLP-BLK

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 2 4 8 12 16 20 24

E
B

-d
if

fe
re

n
c

e

TLP-TRD

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 2 4 8 12 16 20 24

E
B

-d
if

fe
re

n
c

e

TLP-BLK
(a) (b)

(c) (d)

++bestTLP

optFI

++bestTLP

optHS

TLP = 1 TLP = 2 TLP = 4

TLP = 8 TLP = 24 TLP = 2(S)

Fig. 7: Illustrating the working of PBS-FI (a & b) and PBS-HS
(c & d) schemes for BLK_TRD.

where EB-difference is near zero. After fixing, we start to tune
the TLP of the other application (i.e., TRD). The searching is
stopped when the lowest absolute EB-difference is found.

We observe that this searching process stops when TLP-
TRD is 4 (Figure 7 (b)). However, optFI is (2,20) instead of
(2,4). This difference is caused because the EB-FI uses scaling
factor that is approximately calculated by either sampling or
user-given group information. We plot the curve (dashed red
line, Figure 7 (b)) with the exact scaling factor (Table IV). We
are able to locate the correct optFI (2,20) as that point is the
closest to 0 on the dashed red line.

D. Optimizing HS via PBS-HS

In this scheme, our goal is to optimize EB-WS. We again take
advantage of the patterns and observations discussed earlier
in the context of PBS-WS and PBS-FI. For all the evaluated
workloads, we find that a pattern exists in their EB-HS curves.
Therefore, we are able to first find the critical application that
affects the EB-HS the most, followed by TLP tuning of the
non-critical application.

Consider the example of BLK_TRD in the context of HS.
Figure 7 (c) and (d) show two different views of the same data
related to EB-HS metric – one being TLP-BLK as x-axis and
curves representing iso-TLP-TRD states (Figure 7 (c)), and vice
versa for the second view (Figure 7 (d)). PBS-HS starts with
examining the effect on EB-HS when the TLP of a particular
application changes and the TLP of the other application is
fixed at 24. This process is repeated for every application in the
workload. The application that causes larger drops in EB-HS
value is considered to be critical. For example, in Figure 7
(c) and (d), BLK is again the critical application as it affects
the EB-HS the most (larger drop in TLP-TRD=24 curve as
TLP-BLK increases, Figure 7(a)). After fixing TLP-BLK to
be 2, we start tuning TLP-TRD so as to further optimize the
EB-HS. The searching process stops at TLP-TRD=8, leading to
the optimal combination of (2,8), which is exactly the optHS.

GTO
priority

logic

Ready
warps [1:N]

Prioritized
warps
[1:N; 1:N]

Warp-limiting
scheduler

(SWL)

Warps to be
scheduled

Interconnect

Warp Issue Arbiter

PBS mechanism

APP 2 APP 1

TLP1

Fetch/Decode

I-Buffer/Scoreboard

Warp Issue Arbiter

Registers/Execute

Memory Unit

GPU cores

Fetch/Decode

I-Buffer/Scoreboard

Warp Issue Arbiter

Registers/Execute

Memory Unit

GPU cores

L1D cache Shared
Mem.access miss

Memory Partition

L2 Cache partition Off-chip DRAM Channel Controller

access miss Bandwidth utilization

M
e

m
o

ry
 P

ar
ti

ti
o

n

L2 Cache partition Off-chip DRAM Channel Controller

access-1 miss-1 Attained-Bandwidth-1

Fetch/Decode

I-Buffer/Scoreboard

Warp Issue Arbiter

Registers/Execute

Memory Unit

GPU cores

Fetch/Decode

I-Buffer/Scoreboard

Warp Issue Arbiter

Registers/Execute

Memory Unit

GPU cores

L1D cache Shared
Mem.access miss

1

7

8

9

10

Sampling table

EB-1 (1, 1) EB-2 (1, 1)

EB-1 (4, 1) EB-2 (4, 1)

.

EB-1 (24, 1) EB-2 (24, 1)

EB-1 (1, 4) EB-2 (1, 4)

.

EB-1 (1, 24) EB-2(1, 24)

Pattern of
each app.

Modulation

Effective
Bandwidth

fr
o

m
fr

o
m

fr
o

m

2

fr
o

m

L1 Miss Rate-2 L1 Miss Rate-1

access-2 miss-2
4 5

Attained-Bandwidth-2
6

local from 1

local from 2

1 2

3

Fig. 8: Proposed hardware organization. Additional hardware is shown via shaded components and dashed arrows.

E. Implementation Details and Overheads

Our mechanism requires periodic sampling of cache miss
rates at L1 and L2, and memory bandwidth utilization. In our
experiments, we observe uniform miss rate and bandwidth
distribution among the memory partitions and uniform L1 miss
rates across cores that execute the same application. Therefore,
to calculate EB in a low-overhead manner, instead of calculating
EB by collecting information from every core and L2/memory
partition, we collect: a) L1 miss rate information only from
one core per application, and b) attained bandwidth and L2
miss rate information of every application only from one of
the L2/memory partitions.

Figure 8 shows the architectural view of our proposal. First,
after each sampling period, we use the total number of L1 data
cache accesses (1) and misses (2), from each designated core,
and calculate the miss rate of the application. The calculated
miss rates are sent through the interconnect to the designated
memory partition and stored in their respective buffers (3).
Then, the miss rate of each application, L2 cache accesses
(4) and misses (5), and attained bandwidth (6) from the
designated memory partition are forwarded to each core to
be used along with the locally collected L1 data. Such data
is used, per core, to calculate EB (7). The calculated EB
values are then fed to our PBS mechanism (8), which resides
inside the warp issue arbiter within each core, and stored in a
small table (9). In this table, each line represents the EB of
both applications, corresponding to the TLP combination used
for the current sampling period (indicated by the subscript).
After sampling, our PBS mechanism extracts the pattern from
each application and then changes the TLP value for one
application accordingly. The next step, modulation (10), varies
the TLP value of the other application to maximize the relevant
EB-based metric. Finally, the calculated TLP is sent to the
warp-limiting scheduler.

We break down overhead in terms of storage, computation,
and communication. In terms of storage, two 12-bit registers
per core, and three 12-bit registers and one 15-bit register per

memory partition are required to track per-application L1 miss
rate, L2 miss rate, and BW, respectively. The sampling table
needs 60 bytes. In terms of computation, the sampled data is fed
to the PBS mechanism module (8), which performs a simple
search over the 16 × 2 samples collected over the sampling
window. In terms of communication, using a crossbar, the
designated memory partition relays the collected information
(12 bits × 6 + 15 bits × 2 = 102 bits) to the cores every
sampling window. We conservatively assume that the counter
values are sent to the cores with a latency of 20 cycles.

All the runtime overheads are modeled in the PBS results
presented in Section VI. We empirically find that a monitoring
interval of 3000 cycles for each TLP combination searched
via PBS is sufficient as trends do not change significantly
beyond 3000 cycles. The PBS is re-started when any kernel is
re-launched.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate our proposed PBS schemes
(Section V) and compare them against ++bestTLP, opt (optWS,
optFI, optHS), and the following additional schemes:
Brute-Force (BF). BF scheme performs an offline exhaustive
search across all the possible TLP combinations (64) to find
the one that provides the best EB-based metric. Therefore,
BF has three different versions: BF-WS, BF-FI, and BF-HS
that optimizes EB-WS, EB-FI, and EB-HS, respectively. BF
schemes provide a good estimate of the potential of improving
the SD-based metrics (the ones we finally report) via optimizing
EB-based runtime metrics. Note that opt schemes are also brute-
force but instead they perform an exhaustive search to find the
best SD-based metric.
PBS (Offline). PBS-Offline schemes follow the exact same pro-
cedure as previously described in the PBS schemes (Section V)
but do not consider: a) any runtime overheads, and b) dynamic
changes in interference across different kernel executions in
the workload. We consider this comparison point to decouple
the runtime effects from the inherent benefits of the proposed

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

3DS_TRD BFS2_FFT BLK_BFS2 BLK_TRD FFT_TRD FWT_TRD JPEG_CFD JPEG_LIB JPEG_LUH SCP_TRD Gmean

N
o

rm
a

li
z
e

d
W

S
++DynCTA Mod+Bypass PBS-WS PBS-WS (Offline) BF-WS optWS

Fig. 9: Impact of our schemes on Weighted Speedup. Results are
normalized to ++bestTLP.

schemes. Similar to PBS, PBS-Offline also has three versions:
PBS-WS (Offline), PBS-FI (Offline), and PBS-HS (Offline).
Mod+Bypass [35]. In addition to ++DynCTA, we compare
the PBS mechanisms against the recently proposed TLP man-
agement mechanism Mod+Bypass [35] for multi-application
scenario. They use both CTA modulation and cache bypassing
mechanism to enhance the system throughput.

A. Effect on Weighted Speedup

Figure 9 shows the impact of different schemes on the WS
for 10 representative workloads (out of 50 evaluated) along with
Gmean across evaluated workloads. The results are normalized
to the WS obtained under ++bestTLP. Six observations are
in order. First, on average, benefits of BF-WS are as good
as optWS (within 2%) implying that optimizing EB-WS is a
good candidate to improve SD-based WS. However, as EB-WS
is a proxy for WS and it may not work for all workloads as
discussed in Section IV. As the number of outliers are very
few, we did not consider scaling factors for optimizing WS.
Second, PBS-WS (Offline) overall performs as good as optWS.
This shows the inherent effectiveness of PBS in finding the
TLP combination that results in higher WS over ++bestTLP.

Third, on average, PBS also performs as good as the PBS-
WS (Offline). Note that PBS-WS (Offline) offers a trade-off.
As it is a static technique it does not incur runtime overhead
but also cannot adapt to different runtime interference patterns
for locating better TLP combination within the same workload
execution. Therefore, we observe that the benefits of PBS-WS
can be: 1) similar to PBS-WS (Offline) (e.g., BLK_TRD), where
the runtime benefits cancel out with the overheads; 2) worse
than PBS-WS (Offline) (e.g., FWT_TRD, where the runtime
overheads hamper the WS; or 3) better than PBS-WS (Offline)
(e.g., 3DS_TRD, BLK_BFS2), where the runtime tuning of
TLP combination provides benefits. To illustrate the last point,
Figure 11(a) shows the dynamic changes in TLP (TLP-BLK
above and TLP-BFS2 below) over the course of BLK_BFS2
execution. The shaded areas represent the sampling period
including the time during which the decision cannot be taken
because the execution time of the kernel is too short. As
expected and discussed before in Section III, (2,2) is the most
preferred TLP combination for BLK_BFS2 and is chosen for
the longest duration of time. Other TLP combinations are
chosen during other time intervals to boost the WS further.

Fourth, ++DynCTA provides additional benefits over ++best-
TLP (7% on average) because of its ability to adapt under
a shared environment. However, it is still far from PBS
and other schemes as ++DynCTA attempts to enhance the
performance based on application’s local information and
hence can overwhelm the memory system. Fifth, Mod+Bypass

0.5

1

1.5

2

2.5

3

3.5

3DS_TRD BFS2_FFT BLK_BFS2 BLK_TRD FFT_TRD FWT_TRD JPEG_CFD JPEG_LIB JPEG_LUH SCP_TRD Gmean

N
o

rm
a

li
z
e

d
 F

I

++DynCTA Mod+Bypass PBS-FI PBS-FI(Offline) BF-FI optFI

Fig. 10: Impact of our schemes on Fairness. Results are normal-
ized to ++bestTLP.

0

1

2

3

4

5

T
L

P
-B

L
K

Time

0

1

2

3

4

5

T
L

P
-B

F
S

2

Time

(a) Optimizing WS

0

1

2

3

4

5

T
L

P
-B

L
K

Time

0

5

10

15

20

25

T
L

P
-B

F
S

2

Time

(b) Optimizing FI

Fig. 11: Effect of changes in TLP over time for BLK BFS2 with:
a) PBS-WS and b) PBS-FI.

technique helps in improving the performance further over
++DynCTA mainly because it also bypasses the application that
does not take advantage of caches, thereby reducing the cache
contention. However, this mechanism is still far from optWS
as it does not consider the memory bandwidth consumption
and the combined effects of TLP modulation. Finally, PBS-
WS performs significantly better (20%, on average) than the
++bestTLP because of the reasons extensively discussed in
Section III and Section V. FWT_TRD is the only exception as
PBS-WS is not able to find the optimal TLP combination due
to a smaller sampling period.

B. Effect on Fairness Index
Figure 10 shows the impact of different schemes on FI for

10 representative workloads (out of 50 evaluated) along with
Gmean across evaluated workloads. The results are normalized
to the FI obtained under ++bestTLP. Five observations are in
order. First, on average, benefits of BF-FI are not as close as
optFI implying that runtime optimizations play an important
role in achieving high fairness. To evaluate the impact of
scaling factor, we calculated BF-FI both using grouping as
well as sampling information (Section IV). We find that BF-FI
calculated using grouping information is 16% (not shown)
better in FI, averaged across all workloads. However, the
grouping information needs to be supplied by the user. If
exact scaling factors are used (Table IV), BF-FI is close to
optFI as expected. For a fair comparison, Figure 10 shows the
sampling-based BF-FI for comparisons against other dynamic
counterparts.

Second, PBS-FI (Offline) overall performs as good as BF-FI
implying that the scheme itself is effective in providing high
fairness. Third, PBS-FI is able to capture the runtime effects
well and is better than PBS-FI (Offline) in many workloads.
As an example, Figure 11(b) shows the dynamic changes
in TLP (TLP-BLK above and TLP-BFS2 below) over the
course of BLK_BFS2 execution. The shaded areas represent
the sampling period. We observe that despite higher sampling

overhead (as it includes additional sampling to calculate the
scaling factor), PBS-FI is able to provide much higher benefits
than other schemes. It is because TLP combination of (4,2)
allowed to reduce the slowdown of BLK while preserving
the slowdown for BFS2 when it was executing non-cache
sensitive kernels. Fourth, ++DynCTA and Mod+Bypass provide
additional benefits over ++bestTLP (12% and 42% on average,
respectively) because of their ability to adapt under a shared
environment. However, both ++DynCTA and Mod+Bypass
themselves are not designed to improve fairness in the multi-
application environment and only focus on performance. Finally,
PBS-FI performs significantly better (2×, on average) than the
++bestTLP because of the reasons discussed before.

C. Effect on Harmonic Weighted Speedup
Figure 12 shows the impact of the schemes on all

the evaluated 50 workloads. For brevity, we do not show
the results for each workload separately. Instead, we use
the grouping information (Table IV) to form 2-application
clusters and report the average (geometric mean) of the
HS improvements of every workload in the cluster. As
there are four groups, 10 such clusters are possible.

0.6

0.8

1

1.2

1.4

G12 G13 G14 G22 G23 G24 G33 G34 G44 Gmean

N
o

rm
a
li

z
e
d

 H
S

 PBS-HS optHS

Fig. 12: Impact of our schemes on HS.

Figure 12
shows the
results of
nine such
clusters. We
do not study
G11 cluster
as both the
applications
belonging to that cluster have low individual EB and
interference. We observe that PBS-HS enhances HS on
average by 15% over ++bestTLP. Additionally, compared to
optHS, PBS-HS performance is behind by 2%, on average.
We conclude that PBS-HS is a technique that can significantly
enhance both system throughput and fairness over ++bestTLP.

D. Case Studies
We perform four sensitivity studies to understand the

impact of the proposed schemes under different core and
cache partitioning, application scaling, and memory scheduling
scenarios.
Core partitioning. We test PBS under two different core
partitioning scenarios: 2:1 and 1:2 partitioning (e.g., in 2:1,
the first and the second applications are assigned 20 and
10 cores, respectively) and compare it to our baseline that
allocates 15 cores to each application. Figure 13(a) shows the
benefits of PBS over ++bestTLP observed in WS, FI, and
HS averaged across all our 50 workloads. The bar denoted
by Equal represents the average improvement of PBS with
equal partitioning, and the bar denoted by Unequal represents
the average improvement of PBS with the best performing
partitioning scheme among 2:1 and 1:2 (found separately
for each workload and then averaged). PBS enhances WS,
FI, and HS under both equal and unequal core partitioning
scenarios, compared to ++bestTLP. However, the benefits of
PBS reduce with unequal partitioning because with different
core partitioning each application executes with a different

amount of TLP. As we choose the best (among 2:1 and
1:2) core partitioning configuration, the interference is also
alleviated because of core partitioning itself in addition to our
TLP management schemes. As the design of core partitioning
is itself an interesting and non-trivial research problem, we
conclude that these techniques still do not completely solve
the interference problem and TLP management techniques like
PBS can provide additional benefits.

(a)

0
0.5

1
1.5

2
2.5

E
q

u
a
l

U
n

e
q

u
a
l

E
q

u
a
l

U
n

e
q

u
a
l

E
q

u
a
l

U
n

e
q

u
a
l

WS FI HS

Im
p

ro
v
e

m
e

n
t

0
0.5

1
1.5

2
2.5

S
h

a
re

d

E
q

u
a

l

S
h

a
re

d

E
q

u
a

l

S
h

a
re

d

E
q

u
a

l

WS FI HS

0
0.5

1
1.5

2
2.5

 2

A
p

p

 3

A
p

p

 2

A
p

p

 3

A
p

p

 2

A
p

p

 3

A
p

p

WS FI HS

(b) (c)

Fig. 13: Effect of PBS over ++bestTLP with: a) core partitioning,
b) cache partitioning, c) 3-application scaling.

Cache partitioning. Figure 13(b) shows the benefits of PBS
when the L2 is way-partitioned equally (denoted by Equal)
across two applications, and compare it to our baseline where
the L2 cache is shared (denoted by Shared). We observe that
PBS improves all three metrics (WS, FI, and HS) under both
the scenarios. Cache partitioning can alleviate the interference
at L2, but it might be suboptimal in scenarios where different
applications in the same workload utilize the caches differently.
This might lead to a portion of the cache to be not utilized
well. On the other hand, PBS changes the cache demand of
each application by TLP modulation.
Application Scalability. For a k-application workload, we first
rank the criticality of each application in the workload based on
the magnitude of the EB drop. While determining the ranking,
the TLP of other applications is fixed at 24 (same as discussed
before in Section V). If N is the number of TLP choices, the
procedure for deciding the criticality takes less than N × k
steps. Subsequently, the tuning of TLP of each application
would take N × (k−1) steps. Therefore, the associated overall
search complexity is linear to the number of applications (O(N
× k)). In this case study, we evaluate PBS on three-application
workloads by performing some straightforward extensions to
the PBS. Therefore, we find the critical application one by one
under the interference of the other two remaining applications,
keeping other steps the same. We choose 20 representative
three-application workloads to compare the average benefits
to that of workloads with two applications (Figure 13(c)).
We observe that the benefits of PBS are reasonably stable
as the number of applications scales. We conclude that our
techniques are not limited to workloads that consist of only
two applications.
Memory scheduling. We find that PBS provides significant
benefits (15% in WS and 1.92× in FI, on average across
50 workloads) over WEIS memory scheduler designed for
multi-GPU execution [26]. We conclude that TLP management
techniques are more effective than the previously proposed
memory scheduling techniques.

VII. RELATED WORK

To our knowledge, this is the first work that proposes TLP
management techniques for improving system throughput and

fairness in a multi-application environment for GPUs. In this
section, we outline some particularly relevant works.
TLP management techniques in GPUs. Rogers et al. pro-
posed a mechanism that limits the TLP based on the level of
thrashing in each core’s private L1 data cache [50]. Kayiran et
al. proposed a TLP optimization technique that works based
on the latency tolerance of individual GPU cores [30]. Jia et al.
proposed a mechanism that consists of a reference reordering
technique and a bypassing technique such that the cache
thrashing and also resource stalls at the caches reduce [23].
The input to this mechanism is from the L1 caches, and the
decision is local. Sethia and Mahlke devised a method that
controls the number of threads and core/memory frequency
of GPUs [54]. Sethia et al. used a priority mechanism that
allows better overlapping of computation and memory accesses
by limiting the number of warps that can simultaneously
access memory [53]. The work by Zheng et al. allows the
execution of many warps concurrently without thrashing the
L1 cache by employing cache bypassing [69]. All these works
use local metrics available at the GPU cores and do not
consider resource contention at the L2 caches and the memory.
However, we propose mechanisms where all GPU applications
control their TLP while being aware of each other. Further, our
mechanisms are optimized for improving system throughput
and fairness and not instruction throughput, which was the
focus of aforementioned works.

Hong et al. proposed various analytical methods for es-
timating the effect of TLP on performance [20], [21], but
do not propose run-time mechanisms. Kayiran et al. devised
a mechanism where GPU cores modulate their TLP based
on system-level congestion when GPU applications execute
alongside CPU applications in a shared environment [32]. Their
mechanism uses system-level metrics to unilaterally control the
TLP of a single GPU application, whereas our mechanisms
control TLP while being aware of all applications in the system.
Concurrent execution of multiple applications on GPUs.
Xu et al. proposed running multiple GPU applications on
the same GPU cores and assigning CTAs slots to different
applications to improve resource utilization of GPU cores [67].
Likewise, Wang et al. proposed running multiple GPU applica-
tions on the same GPU cores, and augmented it with a warp
scheduler that adopts a time-division multiplexing mechanism
for the co-running applications based on static profiling [66].
These intra-core partitioning techniques are used to partition
resources within a core. However, co-running kernels interfere
with each other significantly, especially in small L1 GPU
caches. In such cases, running these kernels separately on
different cores can be more effective for avoiding intra-core
contention. GPU Maestro dynamically chooses between intra-
core and inter-core techniques to reap the benefits of both [45].
However, none of these mechanisms change the shared cache
and memory footprint of each application, and thus directly
alleviate the shared memory interference. Our goal is to
address the shared resource contention in L2 caches and main
memory by managing TLP of each application differently. PBS
allows each application to dynamically change its cache and
memory footprint cognizant of the other applications’ state.
Pai et al. proposed elastic kernels that allow a fine-grained
control over their resource usage [43]. Their work targets

increasing the utilization of computing resources by accounting
for the parallelism limitation imposed by the hardware, whereas
our mechanism considers the memory system contention
to modulate parallelism. Li et al. proposed a technique to
adjust TLP of concurrently executing kernels [35], which we
quantitatively and qualitatively compare in Section VI. We
conclude that even if a new resource partitioning technique
(see case study (Section VI-D)) is employed, the problem of
multi-application contention in the memory system remains.
Cache and memory management. In the context of traditional
CPUs, several works have investigated coordinated cache
and memory management, and throttling for lower memory
system contention. Zahedi et al. proposed a game-theory
based approach for partitioning cache capacity and memory
bandwidth for multiple software agents [68]. Ebrahimi et al. pro-
posed a throttling technique that improves system fairness and
performance in multi-core memory systems [10]. Eyerman et al.
analyzed the effects of varying degrees of TLP on performance,
in various multi-core designs [12]. Heirman et al. proposed
a technique that matches the application’s cache working set
size and off-chip bandwidth demand with the available system
resources [19]. Qureshi and Patt proposed a cache partitioning
mechanism in the context of multi-core CPUs [48]. Their
mechanism, based on the cache demand of each application,
allocates cache space to co-running applications, whereas our
mechanism changes the cache demand of each application by
controlling their TLP.

VIII. CONCLUSIONS

This paper analyzed the problem of shared resource con-
tention between multiple concurrently executing GPGPU
applications and showed that there is an ample scope for TLP
management techniques for improving system throughput and
fairness in GPUs. Our detailed analysis showed that these
metrics are highly correlated with effective bandwidth, which
is defined as the ratio of attained DRAM bandwidth to the
combined cache miss rate. Based on this observation, we de-
signed pattern-based effective bandwidth management schemes
to quickly locate the most efficient and fair TLP configuration
for each application. Results show that our proposed techniques
can significantly improve the system throughput and fairness
in GPUs compared to previously proposed state-of-the-art
mechanisms. While this paper focused on a specific platform
with concurrently executing GPU applications, we believe that
the presented analysis and the insights can be extended to
other systems (e.g., chip-multiprocessors, systems-on-chip with
accelerator IPs, server processors) where contention in shared
caches and memory resources are performance-critical factors.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
and the members of Insight Computer Architecture Lab at
the College of William and Mary for their feedback. This
material is based upon work supported by the National Science
Foundation (NSF) grants (#1657336 and #1717532) and a start-
up grant from the College of William and Mary. This work was
performed in part using computing facilities at the College of
William and Mary which were provided by contributions from
the NSF, the Commonwealth of Virginia Equipment Trust Fund

and the Office of Naval Research. AMD, the AMD Arrow logo,
and combinations thereof are trademarks of Advanced Micro
Devices, Inc. Other product names used in this publication are
for identification purposes only and may be trademarks of their
respective companies.

REFERENCES

[1] “NVIDIA GTX 780-Ti,” http://www.nvidia.com/gtx-700-graphics-cards/
gtx-780ti/.

[2] J. Adriaens et al., “The Case for GPGPU Spatial Multitasking,” in HPCA,
2012.

[3] Advanced Micro Devices Inc., “AMD Graphics Cores Next (GCN)
Architecture,” Advanced Micro Devices, 2012.

[4] A. Bakhoda et al., “Analyzing CUDA Workloads Using a Detailed GPU
Simulator,” in ISPASS, 2009.

[5] S. Che et al., “Rodinia: A Benchmark Suite for Heterogeneous Comput-
ing,” in IISWC, 2009.

[6] A. Danalis et al., “The Scalable Heterogeneous Computing (SHOC)
Benchmark Suite,” in GPGPU, 2010.

[7] R. Das et al., “Application-to-core Mapping Policies to Reduce Memory
Interference in Multi-core Systems,” in PACT, 2012.

[8] R. Das et al., “Application-aware Prioritization Mechanisms for on-chip
Networks,” in MICRO, 2009.

[9] R. Das et al., “Aergia: Exploiting Packet Latency Slack in on-chip
Networks,” in ISCA, 2010.

[10] E. Ebrahimi et al., “Fairness via Source Throttling: A Configurable and
High-performance Fairness Substrate for Multi-core Memory Systems,”
in ASPLOS, 2010.

[11] A. Eklund et al., “Medical Image Processing on the GPU-Past, Present
and Future,” Medical Image Analysis, 2013.

[12] S. Eyerman and L. Eeckhout, “The Benefit of SMT in the Multi-core Era:
Flexibility Towards Degrees of Thread-level Parallelism,” in ASPLOS,
2014.

[13] X. Gong et al., “TwinKernels: An Execution Model to Improve GPU
Hardware Scheduling at Compile Time,” in CGO, 2017.

[14] N. Goswami et al., “Power-performance Co-optimization of Throughput
Core Architecture Using Resistive Memory,” in HPCA, 2013.

[15] GPGPU-Sim v3.2.1. Address mapping. Available: {http://gpgpu-sim.org/
manual/index.php5/GPGPU-Sim 3.x Manual#Memory Partition}

[16] GPGPU-Sim v3.2.1. GTX 480 Configuration. Available: {https:
//dev.ece.ubc.ca/projects/gpgpu-sim/browser/v3.x/configs/GTX480}

[17] C. Gregg et al., “Fine-grained Resource Sharing for Concurrent GPGPU
Kernels,” in HotPar, 2012.

[18] Z. Guz et al., “Many-Core vs. Many-Thread Machines: Stay Away from
the Valley,” CAL, January 2009.

[19] W. Heirman et al., “Undersubscribed Threading on Clustered Cache
Architectures,” in HPCA, 2014.

[20] S. Hong and H. Kim, “An Analytical Model for a GPU Architecture
with Memory-level and Thread-level Parallelism Awareness,” in ISCA,
2009.

[21] S. Hong and H. Kim, “An Integrated GPU Power and Performance
Model,” in ISCA, 2010.

[22] Hynix. Hynix GDDR5 SGRAM Part H5GQ1H24AFR Revi-
sion 1.0. Available: {http://www.hynix.com/datasheet/pdf/graphics/
H5GQ1H24AFR(Rev1.0).pdf}

[23] W. Jia et al., “MRPB: Memory Request Prioritization for Massively
Parallel Processors,” in HPCA, 2014.

[24] A. Jog et al., “Application-aware Memory System for Fair and Efficient
Execution of Concurrent GPGPU Applications,” in GPGPU, 2014.

[25] A. Jog et al., “Anatomy of GPU Memory System for Multi-Application
Execution,” in MEMSYS, 2015.

[26] A. Jog et al., “MAFIA - Multiple Application Framework in GPU
Architectures,” URL: https://github.com/adwaitjog/mafia, 2015.

[27] A. Jog et al., “Orchestrated Scheduling and Prefetching for GPGPUs,”
in ISCA, 2013.

[28] A. Jog et al., “OWL: Cooperative Thread Array Aware Scheduling
Techniques for Improving GPGPU Performance,” in ASPLOS, 2013.

[29] I. Karlin et al., “Exploring Traditional and Emerging Parallel Program-
ming Models using a Proxy Application,” in IPDPS, 2013.

[30] O. Kayiran et al., “Neither More Nor Less: Optimizing Thread-level
Parallelism for GPGPUs,” in PACT, 2013.

[31] O. Kayiran et al., “µC-States: Fine-grained GPU Datapath Power
Management,” in PACT, 2016.

[32] O. Kayiran et al., “Managing GPU Concurrency in Heterogeneous
Architectures,” in MICRO, 2014.

[33] Y. Kim et al., “Thread Cluster Memory Scheduling: Exploiting Differ-
ences in Memory Access Behavior,” in MICRO, 2010.

[34] J. Lee et al., “Orchestrating Multiple Data-Parallel Kernels on Multiple
Devices,” in PACT, 2015.

[35] X. Li and Y. Liang, “Efficient Kernel Management on GPUs,” in DATE,
2016.

[36] J. Liu et al., “SAWS: Synchronization Aware GPGPU Warp Scheduling
for Multiple Independent Warp Schedulers,” in MICRO, 2015.

[37] K. Menychtas et al., “Disengaged Scheduling for Fair, Protected Access
to Fast Computational Accelerators,” in ASPLOS, 2014.

[38] NVIDIA, “How to Harness Big Data for Improving Public Health,”
http://www.govhealthit.com/news/how-harness-big-data-improving-
public-health.

[39] NVIDIA, “Researchers Deploy GPUs to Build World’s Largest Artificial
Neural Network,” http://nvidianews.nvidia.com/Releases/Researchers-
Deploy-GPUs-to-Build-World-s-Largest-Artificial-Neural-Network-
9c7.aspx.

[40] NVIDIA, “CUDA C/C++ SDK Code Samples,” http://developer.nvidia.
com/cuda-cc-sdk-code-samples, 2011.

[41] NVIDIA, “JP Morgan Speeds Risk Calculations with NVIDIA GPUs,”
2011.

[42] NVIDIA, “NVIDIA’s Next Generation CUDA Compute Architecture:
Kepler GK110,” 2012.

[43] S. Pai et al., “Improving GPGPU Concurrency with Elastic Kernels,” in
ASPLOS, 2013.

[44] J. J. K. Park et al., “Chimera: Collaborative Preemption for Multitasking
on a Shared GPU,” in ASPLOS, 2015.

[45] J. J. K. Park et al., “Dynamic Resource Management for Efficient
Utilization of Multitasking GPUs,” in ASPLOS, 2017.

[46] S. I. Park et al., “Low-cost, High-speed Computer Vision Using NVIDIA’s
CUDA Architecture,” in AIPR, 2008.

[47] M. K. Qureshi et al., “A Case for MLP-Aware Cache Replacement,” in
ISCA, 2006.

[48] M. K. Qureshi and Y. N. Patt, “Utility-based Cache Partitioning: A Low-
overhead, High-performance, Runtime Mechanism to Partition Shared
Caches,” in MICRO, 2006.

[49] M. Rhu et al., “A Locality-Aware Memory Hierarchy for Energy-Efficient
GPU Architectures,” in MICRO, 2013.

[50] T. G. Rogers et al., “Cache-Conscious Wavefront Scheduling,” in MICRO,
2012.

[51] D. Schaa and D. Kaeli, “Exploring the Multiple-GPU Design Space,” in
IPDPS, 2009.

[52] I. Schmerken, “Wall Street Accelerates Options Analysis with GPU
Technology,” 2009.

[53] A. Sethia et al., “Mascar: Speeding up GPU Warps by Reducing Memory
Pitstops,” in HPCA, 2015.

[54] A. Sethia and S. Mahlke, “Equalizer: Dynamic Tuning of GPU Resources
for Efficient Execution,” in MICRO, 2014.

[55] A. Snavely and D. M. Tullsen, “Symbiotic Jobscheduling for a Simulta-
neous Multithreaded Processor,” in ASPLOS, 2000.

[56] S. S. Stone et al., “Accelerating Advanced MRI Reconstructions on
GPUs,” JPDC, vol. 68, no. 10, pp. 1307–1318, 2008.

[57] J. A. Stratton et al., “Parboil: A Revised Benchmark Suite for Scientific
and Commercial Throughput Computing,” University of Illinois, at
Urbana-Champaign, Tech. Rep. IMPACT-12-01, March 2012.

[58] I. Tanasic et al., “Enabling Preemptive Multiprogramming on GPUs,” in
ISCA, 2014.

[59] X. Tang et al., “Controlled Kernel Launch for Dynamic Parallelism in
GPUs,” in HPCA, 2017.

[60] Y. Ukidave et al., “Runtime Support for Adaptive Spatial Partitioning
and Inter-kernel Communication on GPUs,” in SBAC-PAD, 2014.

[61] Y. Ukidave et al., “Mystic: Predictive Scheduling for GPU Based Cloud
Servers Using Machine Learning,” in IPDPS, 2016.

[62] T. Vijayaraghavany et al., “Design and Analysis of an APU for Exascale
Computing,” in HPCA, 2017.

[63] N. Vijaykumar et al., “Enabling Efficient Data Compression in GPUs,”
in ISCA, 2015.

[64] J. Wang et al., “Dynamic Thread Block Launch: A Lightweight Execution
Mechanism to Support Irregular Applications on GPUs,” in ISCA, 2015.

[65] L. Wang et al., “Exploiting Concurrent Kernel Execution on Graphic
Processing Units,” in HPCS, 2011.

[66] Z. Wang et al., “Simultaneous Multikernel GPU: Multi-tasking Through-
put Processors via Fine-grained Sharing,” in HPCA, 2016.

[67] Q. Xu et al., “Warped-Slicer: Efficient Intra-SM Slicing through Dynamic
Resource Partitioning for GPU Multiprogramming,” in ISCA, 2016.

[68] S. M. Zahedi and B. C. Lee, “REF: Resource Elasticity Fairness with
Sharing Incentives for Multiprocessors,” in ASPLOS, 2014.

[69] Z. Zheng et al., “Adaptive Cache and Concurrency Allocation on
GPGPUs,” CAL, vol. 14, no. 2, pp. 90–93, 2015.

