1- Automata Processing

- Used widely in different areas
- Von Neumann architectures are not efficient at FSM processing
 - Irregular memory accesses
 - Limited Parallelism

Solution: Use Automata Processor (AP)

- Enables in-memory processing
- Exploits state parallelism of NFAs

2- Challenges & Opportunities

- Applications are getting bigger
- AP capacity is limited

Challenge: Repeated Executions!

Opportunity: Underutilization of AP

Pattern mismatch → Many unused states are configured to AP

Potential Solution: Remove Cold states from the NFAs

Configure ONLY the Hot states to AP

3- Potential Benefits & Research Questions

- **Question #1:** How to predict Cold states?
 - Oracular knowledge of input
 - Solution: Use a small profiling input to predict the Hot/Cold states
 - Correlates with Cold and Hot states
 - Makes transition unidirectional

- **Question #2:** How to partition NFAs?
 - Arbitrary states partitioning
 - Correlates with Cold and Hot states
 - Solution: Partition using Topological Order

- **Question #3:** How to handle mispredictions efficiently?
 - SpAP = Jump Op + Enable Op

4- Efficient Automata Processing on AP

Q1: How to predict Cold states?
- Oracular knowledge of input
- Solution: Use a small profiling input to predict the Hot/Cold states

- % from input
 - 50%: 100% accuracy
 - 10%: 20% accuracy
 - 1%: 2% accuracy
 - 0.1%: 0.2% accuracy

Q2: How to partition NFAs?
- Arbitrary states partitioning
- Solution: Partition using Topological Order
- Correlates with Cold and Hot states
- Makes transition unidirectional

Q3: How to handle mispredictions efficiently?
- SpAP = Jump Op + Enable Op

5- Summary

- **Observation:** Repeated configurations and executions on AP which causes inefficiency
- **Goal:** Accelerate large-scale NFA processing on AP
 - Demonstrate that a large number of NFA states are Cold during execution but still configured to AP
 - Predict if a state is Cold or Hot @ compile time using a small profiling input
 - Propose topological-order based NFA partitioning into Predicted Cold and Predicted Hot states
 - Develop SparseAP to handle mispredictions efficiently using our proposed Enable and Jump operations

- **Results:**
 - 2.1x Speedup (up to 47x)

We acknowledge the support of the National Science Foundation (NSF) grants #1657336, #1717532, #1750667