

ON ENHANCING THE PERFORMANCE OF BUFFERLESS

NETWORK-ON-CHIP

By

Mohamed Assem Abd ElMohsen Ibrahim

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

Computer Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2016

ON ENHANCING THE PERFORMANCE OF BUFFERLESS

NETWORK-ON-CHIP

By

Mohamed Assem Abd ElMohsen Ibrahim

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

Computer Engineering

Under the Supervision of

Dr. Hatem M. El-Boghdadi

Professor

Computer Engineering Department

Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2016

ON ENHANCING THE PERFORMANCE OF BUFFERLESS

NETWORK-ON-CHIP

By

Mohamed Assem Abd ElMohsen Ibrahim

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

Computer Engineering

Approved by the

Examining Committee

Dr. Hatem M. El-Boghdadi, Thesis Main Advisor
- Professor at the Faculty of Engineering, Cairo University

Dr. Amr G. Wassal, Internal Examiner
- Associate Professor at the Faculty of Engineering, Cairo University

Prof. Dr. Mohammad Z. Abdel Majeed, External Examiner
- Professor at the Faculty of Engineering, Al-Azhar University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2016

Engineer’s Name: Mohamed Assem Abd ElMohsen

Ibrahim

Date of Birth: 07/07/1988

Nationality: Egyptian

E-mail: mohamedassem@eng.cu.edu.eg

Phone: +2 01007846437

Address: 407N, Pyramids Gardens

Giza, Egypt

Registration Date: 01/10/2010

Awarding Date: …./…./2016

Degree: Master of Science

Department: Computer Engineering

Supervisors: Dr. Hatem Mahmoud El-Boghdadi

Examiners: Prof. Dr. Mohammad Zaki Abdel-Majeed (External

examiner)
- Professor at the Faculty of Engineering, Al-Azhar University

 Dr. Amr Jalal El-Deen Wassal (Internal examiner)

 Dr. Hatem Mahmoud El-Boghdadi (Thesis main

advisor)

Title of Thesis:

On Enhancing the Performance of Bufferless Network-on-Chip

Key Words:

Bufferless Network-on-Chip; Selection Function; Maximum Flexibility; Ranking

Policies; Congestion Management;

Summary:
 With the arrival of chip multiprocessor systems, Network-on-Chip (NoC) has started to

form the backbone of communication within a microprocessor chip. However, unfortunately,

the performance of NoC is bounded by the limited power and area budgets. Bufferless NoC has

emerged as a solution to reduce power and area. Bufferless NoC eliminates the buffers used for

routing and/or flow control and handle contention using packet dropping or packet deflection.

In this thesis, we focus on enhancing the performance (latency and deflection count) of

deflection-based bufferless NoC running latency-sensitive applications.

 First, we present an analytical study for the traffic in bufferless NoC under the Maximum

Flexibility (MaxFlex) selection function with different step sizes. We also provide an

experimental study under MaxFlex. Simulation results show that with large values of step size,

the latency could be reduced by 97% over using Straight Line selection function. The

proposed analysis explains the outperforming experimental results.

 Then we propose different flit ranking policies that focus on decreasing the deflection count

of the flits. Simulation results show that the proposed ranking policies can reduce the latency by

up to 58% compared to Oldest First policy.

 Finally, we consider relaxing the effect of congestion in bufferless NoC under high injection

rate. We propose two approaches for congestion prevention. The first considers running

applications on NoC with extra nodes. The second considers dividing a certain load into a

sequence of lighter loads. Simulation results show that the proposed approaches enhance the

latency by up to 61% in addition to operating at higher injections rates.

mailto:mohamedassem@eng.cu.edu.eg

i

Acknowledgments

 الرحيم الرحمن الله بسم

 البقرة. "﴾٢٣﴿الْحَكِيمُ الْعَلِيمُ أنَتَ إنِكََ ۖ عَلمَْتنََا مَا إلَِ لنََا عِلْمَ لَ سُبْحَانكََ "

“Glory to You (O Lord), we have no knowledge except what you have taught us.

Indeed, it is You who is the knowing, the wise (32)” Al-baqarah

 هود. "﴾٨٨﴿ أنُيِبُ وَإِليَْهِ وَكَلْتُ تَ عَليَْهِ ۖ بِاللَـهِ إلَِ توَْفيِقِي وَمَا "

“And my success is not but through Allah. Upon him I have relied and to Him I return

(88)” Hood.

I would like to express my sincere gratitude to my advisor, Dr. Hatem El-Boghdadi, for

his huge support, patience and immense knowledge. His guidance helped me in all the

time of working on this thesis. I could not have imagined having a better advisor and

mentor for my masters study.

Also, I take this opportunity to express gratitude to all of the Computer Engineering

department members for their help and support.

I would like to thank my family for their encouragement, support, and attention without

which I would never have made it to the end.

Last but not the least; I would like to thank my wife, Yousra, for being always there for

me and for her support and kindness. My uttermost gratitude goes to Allah that I met

her in such critical point in my life.

ii

Table of Contents

ACKNOWLEDGMENTS .. I

TABLE OF CONTENTS .. II

LIST OF TABLES ... V

LIST OF FIGURES ... VI

ABSTRACT ... X

CHAPTER 1 : INTRODUCTION .. 1

1.1. BASIC BACKGROUND ... 2

1.1.1. Buffered NoCs .. 2

1.1.2. Bufferless NoCs .. 3

1.1.3. Selection Functions ... 3

1.1.4. Maximum Flexibility Selection Function .. 3

1.1.5. Flit Ranking Policies ... 4

1.1.6. Congestion Management ... 4

1.2. RELATED WORK .. 5

1.3. SCOPE OF THE THESIS .. 6

1.3.1. Increasing and Varying Step Size Under MaxFlex 7

1.3.2. Evaluating Flit Ranking Policies ... 7

1.3.3. Preventing the Congestion .. 8

1.4. CONTRIBUTION OF THE THESIS .. 8

1.5. ORGANIZATION OF THE THESIS ... 9

CHAPTER 2 : BACKGROUND ... 10

2.1. INTERCONNECTION NETWORK ... 10

2.2. NETWORK-ON-CHIP (NOC) .. 11

2.3. BUFFERLESS NETWORK-ON-CHIP .. 12

2.4. SELECTION FUNCTIONS .. 13

2.5. FLIT RANKING POLICIES .. 14

2.6. CONGESTION MANAGEMENT ... 15

CHAPTER 3 : MODIFIED MAXIMUM FLEXIBILITY SELECTION

FUNCTION ... 16

3.1. PROPOSED APPROACH .. 16

3.2. ANALYSIS OF MMAXFLEX SELECTION FUNCTION 17

3.2.1. Type 1 Packets .. 19

3.2.2. Type 2 Packets .. 20

3.2.3. Type 3 Packets .. 20

3.2.4. Type 4 Packets .. 21

3.2.5. Type 5 Packets .. 21

3.2.6. Type 6 Packets .. 25
3.2.6.1. Type 6 (a) ... 25

iii

3.2.6.2. Type 6 (b) ... 27
3.2.6.3. Type 6 (c) ... 29
3.2.6.4. Type 6 (d) ... 29

3.2.7. Type 7 Packets .. 29
3.2.7.1. Type 7 (a) ... 30
3.2.7.2. Type 7 (b) ... 30
3.2.7.3. Type 7 (c) ... 31
3.2.7.4. Type 7 (d) ... 31

3.2.8. Type 8 Packets .. 31
3.2.8.1. Type 8 (a) ... 35
3.2.8.2. Type 8 (b) ... 36

3.2.9. Type 9 Packets .. 36
3.2.9.1. Type 9 (a, c) ... 36
3.2.9.2. Type 9 (b, d) ... 37

3.2.10. Type 10 Packets .. 38
3.2.10.1. Type 10 (a, c) ... 38
3.2.10.2. Type 10 (b, d) ... 39

3.2.11. Type 11 Packets .. 40
3.2.11.1. Type 11 (a) ... 40
3.2.11.2. Type 11 (b) ... 42
3.2.11.3. Type 11 (c) ... 43
3.2.11.4. Type 11 (d) ... 43

3.2.12. Type 12 Packets .. 44
3.2.12.1. Type 12 (a) ... 44
3.2.12.2. Type 12 (b) ... 45
3.2.12.3. Type 12 (c) ... 46
3.2.12.4. Type 12 (d) ... 46

3.2.13. Summary of Packets Count Calculations .. 48

3.3. PROOF OF PACKET TYPES COMPLETENESS ... 49

3.4. PACKETS DISTRIBUTION ANALYSIS RESULTS 51

3.5. EXPERIMENTAL SETUP ... 51

3.5.1. Experimental Methodology ... 52

3.5.2. Interconnection Network Model ... 52

3.5.3. Evaluation Metrics .. 52

3.6. SIMULATION RESULTS ... 53

3.7. ESTIMATION OF THE VALUE OF THE STEP SIZE 55

3.8. CONCLUDING REMARKS .. 55

CHAPTER 4 : VARIABLE STEP SIZE MAXIMUM FLEXIBILITY

SELECTION FUNCTION .. 56

4.1. MOTIVATION .. 56

4.2. PROPOSED VARIABLE STEP SIZE APPROACHES 56

4.2.1. Using the Manhattan distance between NoC nodes (NMDVS) 57

4.2.2. Using the Manhattan distance between NoC regions (RMDVS) 58

4.2.3. Using In-Region and Out-Region routing (IORVS) 58

4.2.4. Using the Manhattan distance between NoC nodes for Out-Region

routing (ORMDVS) .. 59

4.3. SIMULATION RESULTS ... 59

4.4. CONCLUDING REMARKS .. 73

iv

CHAPTER 5 : NEW FLIT RANKING POLICIES FOR DEFLECTION-BASED

BUFFERLESS NOCS .. 75

5.1. MOTIVATION .. 75

5.1.1. Oldest First Ranking Policy (OF) .. 75

5.1.2. Most Deflection First Ranking Policy (MDF) 76

5.2. PROPOSED FLIT RANKING POLICIES ... 76

5.2.1. Deflection Age Ratio Ranking Policy (DAR) 76

5.2.2. Deflection Distance Ratio Ranking Policy (DDR) 77

5.2.3. Last Dimension Ranking Policy (LD) ... 77

5.3. SIMULATION RESULTS ... 77

5.4. CONCLUDING REMARKS .. 79

CHAPTER 6 : TIME-SENSITIVE CONGESTION MANAGEMENT

MECHANISMS .. 80

6.1. MOTIVATION .. 80

6.2. PROPOSED APPROACHES .. 81

6.2.1. Using Larger NoCs (LNoC) .. 81

6.2.2. Using Sequential Injection (SI) ... 81

6.3. SIMULATION RESULTS ... 82

6.4. CONCLUDING REMARKS .. 85

CHAPTER 7 : DISCUSSION AND CONCLUSION .. 86

7.1. FUTURE WORK... 86

REFERENCES ... 88

APPENDIX A: 2D MESH TERMINOLOGIES .. 92

PUBLICATIONS .. 94

v

List of Tables

Table 1: Up traffic passing through switch C ... 23

Table 2: Type 5 Count calculation for an increasing diagonal switches under up traffic

using different SS values .. 24
Table 3: Down traffic passing through switch C .. 24
Table 4: Type 5 Count calculation for an increasing diagonal switches under down

traffic using different SS values .. 24

Table 5: Up traffic passing through switch CSolid ... 27
Table 6: Type 6(a) Count calculation for the solid diagonal switches under up traffic

using different SS values .. 27

Table 7: Type 6(a) Count calculation for the dotted diagonal switches under up traffic

using different SS values .. 27
Table 8: Down traffic communication passing through switch DDotted 28
Table 9: Type 6(b) Count calculation for the dotted diagonal switches under down

traffic using different SS values .. 28

Table 10: Type 6(b) Count calculation for the solid diagonal switches under down

traffic using different SS values .. 28
Table 11: Down traffic passing through switch A .. 33

Table 12: Summary for the data collected in Table 11 .. 33
Table 13: Down traffic passing through switch B .. 33
Table 14: Down traffic passing through switch C .. 34

Table 15: Down traffic passing through switch D .. 34

Table 16: Up traffic passing through switch ZSolid .. 42
Table 17: Up traffic passing through switch YSolid .. 45
Table 18: Formulas for different traffic types .. 47

Table 19: Common variables used in Table 19 .. 49
Table 20: A and B values for up and down traffic ... 49

Table 21: Multiplier value for Type 8, Type 9 and Type 10 .. 49
Table 22: Values for Type 9 up traffic communication ... 49
Table 23: First category cases .. 50
Table 24: Second category cases .. 50

Table 25: Step size to mesh dimension percentage .. 55

vi

List of Figures

Figure 1: Generic switch in a 2D mesh .. 2

Figure 2: Example of interconnection network .. 10
Figure 3: Generic switch in a 2D mesh .. 11
Figure 4: The operation of MaxFlex selection function using step size of one 13
Figure 5: The operation of MaxFlex selection function using step size of one 17
Figure 6: Increasing and decreasing diagonals in a 2D mesh .. 18

Figure 7: Up and down traffic in 2D mesh ... 18
Figure 8: Location of W(i,j) in 2D mesh row ... 20
Figure 9: Type 3 example for a row in 5x5 and 6x6 meshes ... 21

Figure 10: Type 3 Count calculation for a row switch in a 5x5 mesh............................ 21
Figure 11: Location of W(i,j) in 2D mesh diagonal.. 22
Figure 12: Type 5 example for an increasing diagonal .. 23
Figure 13: Type 6 example for an increasing diagonal under both up and down traffics

 .. 25

Figure 14: Location of W(i,j) in 2D mesh diagonal.. 26

Figure 15: Type 7 example for an increasing diagonal under both up and down traffics

 .. 30

Figure 16: Type 8 example for an increasing diagonal in a 12x12 mesh 32
Figure 17: Procedure for counting the packets passing through a switch for Type 8(a) 35
Figure 18: Procedure for counting the packets passing through a switch for Type 8(b) 36

Figure 19: Procedure for counting the packets passing through a switch for Type 9(a, c)

 .. 37
Figure 20: Procedure for counting the packets passing through a switch for Type 9(b, d)

 .. 38

Figure 21: Procedure for counting the packets passing through a switch for Type 10(a,

c) ... 39

Figure 22: Procedure for counting the packets passing through a switch for Type 10(b,

d) ... 40
Figure 23: Location of W(i,j) in 2D mesh .. 41
Figure 24: Type 11 example for an increasing diagonal under both up and down traffics

 .. 42
Figure 25: Type 12 example for an increasing diagonal under both up and down traffics

 .. 45
Figure 26: Number of packet passing through sample border and core switches over

different fixed step size values ... 51
Figure 27: Average packet latency for different fixed step size values 53
Figure 28: Average deflection count for different fixed step size values 53

Figure 29: Average packet latency for different fixed step sizes at flit injection rate =

0.22 flit/cycle/node ... 53
Figure 30: Average packet latency for fixed step size of 8 compared with different

selection functions .. 54
Figure 31: Average deflection count for fixed step size of 8 compared with different

selection functions .. 54
Figure 32: 4x4 mesh divided into four 2x2 regions ... 57
Figure 33: Average packet latency for NMDVS using different % values 60

Figure 34: Average deflection count for NMDVS using different % values 60

vii

Figure 35: Average packet latency for RMDVS compared with RMDVS` 61
Figure 36: Average deflection count for RMDVS compared with RMDVS` 61

Figure 37: Average packet latency for different values under in

 using 2x2 region size ... 62

Figure 38: Average packet latency for different values under in

 using 5x5 region size ... 62

Figure 39: Average deflection count for different values under in

 using 2x2 region size ... 62

Figure 40: Average deflection count for different values under in

 using 5x5 region size ... 62

Figure 41: Average packet latency for different values under in

 using 2x2 region size ... 63

Figure 42: Average packet latency for different values under in

 using 5x5 region size ... 63

Figure 43: Average deflection count for different values under in

 using 2x2 region size ... 63

Figure 44: Average deflection count for different values under in

 using 5x5 region size ... 63

Figure 45: Average packet latency for different values under in

 using 2x2 region size ... 64

Figure 46: Average packet latency for different values under in

 using 5x5 region size ... 64

Figure 47: Average deflection count for different values under in

 using 2x2 region size ... 64

Figure 48: Average deflection count for different values under in

 using 5x5 region size ... 64

Figure 49: Average packet latency for different values under in

 using 2x2 region size ... 65

Figure 50: Average packet latency for different values under in

 using 5x5 region size ... 65

Figure 51: Average deflection count for different values under in

 using 2x2 region size ... 65

Figure 52: Average deflection count for different values under in

 using 5x5 region size ... 65

Figure 53: Average packet latency for different values under in

 using 2x2 region size ... 66

Figure 54: Average packet latency for different values under in

 using 5x5 region size ... 66

Figure 55: Average deflection count for different values under in

 using 2x2 region size ... 66

Figure 56: Average deflection count for different values under in

 using 5x5 region size ... 66

Figure 57: Average packet latency for different values under in

 using 2x2 region size ... 67

Figure 58: Average packet latency for different values under in

 using 5x5 region size ... 67

Figure 59: Average deflection count for different values under in

 using 2x2 region size ... 67

viii

Figure 60: Average deflection count for different values under in

 using 5x5 region size ... 67

Figure 61: Average packet latency for different values under in

 using 2x2 region size ... 68

Figure 62: Average packet latency for different values under in

 using 5x5 region size ... 68

Figure 63: Average deflection count for different values under in

 using 2x2 region size ... 68

Figure 64: Average deflection count for different values under in

 using 5x5 region size ... 68

Figure 65: Average packet latency for different values under in

 using 2x2 region size ... 69

Figure 66: Average packet latency for different values under in

 using 5x5 region size ... 69

Figure 67: Average deflection count for different values under in

 using 2x2 region size ... 69

Figure 68: Average deflection count for different values under in

 using 5x5 region size ... 69

Figure 69: Average packet latency for different values under in

 using 2x2 region size ... 70

Figure 70: Average packet latency for different values under in

 using 5x5 region size ... 70

Figure 71: Average deflection count for different values under in

 using 2x2 region size ... 70

Figure 72: Average deflection count for different values under in

 using 5x5 region size ... 70

Figure 73: Average packet latency using different values and 60% under

2x2 region size .. 72

Figure 74: Average deflection count using different values and 60% under

2x2 region size .. 72

Figure 75: Average packet latency using different values and 60% under

5x5 region size .. 72

Figure 76: Average deflection count using different values and 60% under

5x5 region size .. 72
Figure 77: Average packet latency for different variable step size formulas 73
Figure 78: Average deflection count for different variable step size formulas 73
Figure 79: Average packet latency for different ranking policies 78

Figure 80: Average deflection count for different ranking policies 78
Figure 81: Average packet latency for LD enhancement over other ranking policies ... 78

Figure 82: Average deflection count for LD enhancement over other ranking policies 78
Figure 83: Using 4x4 mesh instead of 3x3 mesh ... 81
Figure 84: Example of two phase sequential injection ... 82
Figure 85: Average packet latency for fifteen nodes in different mesh sizes 83
Figure 86: Average deflection count for fifteen nodes in different mesh sizes 83

Figure 87: Average packet latency for different number of extra nodes in different

locations in 10x10 mesh ... 84
Figure 88: Average deflection count for different number of extra nodes in different

locations in 10x10 mesh ... 84

ix

Figure 89: Average packet latency for two phase SI using different number of nodes in

different locations in 10x10 mesh .. 85
Figure 90: Average deflection count for two phase SI using different number of nodes

in different locations in 10x10 mesh .. 85
Figure 91: Main increasing and decreasing diagonals in 5x5 mesh 92

x

Abstract

Network-on-Chip (NoC) is commonly used to connect different computing

components. With the arrival of chip multiprocessor systems, NoC has started to form

the backbone of communication between cores and memory within a microprocessor

chip. Although NoC has started to form the backbone of communication between cores,

the performance of such interconnection network is bounded by the limited power and

area budgets. Bufferless NoC has emerged as a solution to reduce power and area.

Bufferless NoC eliminates the buffers used for routing or flow control and handle

contention using packet dropping or packet deflection.

We focus on enhancing the performance (in particular, packet latency and

deflection count) of deflection-based bufferless NoC running latency-sensitive

applications. We divide the work to focus on three aspects of NoC. First, we focus on

selecting an output port for the outgoing packet. After that, we shift our focus to

ranking the flits in order to select which one to serve first. Finally, we investigate

relaxing the effect of congestion under high injection rate.

In the first part, we study the effect of Maximum Flexibility selection function

(MaxFlex) on 2D bufferless meshes when a fixed or a variable step size is used. The

selection function selects an output channel from a set of channels supplied by the

routing function. MaxFlex is a well-known selection function that tries to maximize the

number of routing choices as a packet approaches its destination. We investigate the

distribution of packets through the NoC via increasing and/or varying the used step size

as improving the distribution leads to better utilization and thus better performance.

Simulation results show that using a larger step size can enhance the performance by up

to 95% compared to using Straight Line selection function. Also, the results show that

using variable step size enhances the performance compared to fixed step size by up to

29 %.

Concerning the second part, we devise and evaluate different flit ranking policies.

A flit ranking policy chooses which flit should be served first, thus it determines which

flit can select an output port first. In this work, we propose novel ranking policies that

take the deflection behavior of the bufferless NoC into account. Via the experimental

study, we compare these policies to the Oldest First (OF) ranking policy. Simulation

results show that the performance of the proposed policies excels over fixed step size

MaxFlex with OF as ranking policy by up to 58%.

Finally, we focus on congestion prevention for bufferless NoC running latency-

sensitive applications. NoC congestion is one of the main roadblocks that prevent the

bufferless NoC to operate under high injection rates. Thus, by relaxing the congestion,

bufferless NoCs can approach the performance of buffered NoCs but without the extra

cost of using buffers (power and area). To address this problem, we propose prevention

mechanisms that target the deflection count of the flits. The proposed approaches aim

to give more space for the flits to roam leading to fewer deflections which directly

affects the overall packet latency. Via simulation, we show that the proposed

approaches enhance the packet latency by 61% compared to fixed step size MaxFlex.

1

Chapter 1 : Introduction

In the last few years, there is an industry wide switch to many-core and multi-core

systems. In such systems, the performance of the communication system is very critical

to the performance of the whole system.

Network-on-Chip (NoC) has emerged as a solution for the limitations in the

traditional communications approaches (e.g. buses) especially after the tremendous

increase in the number of the communicating modules within a single silicon chip [1,2].

NoC is a group of switches connecting homogeneous or heterogeneous nodes in a

multiple point-to-point fashion [3,4]. NoC switches forward the data to/from the

nodes/switches over links equipped with input and output buffers.

Buffered NoCs became the de facto approach for communication between cores

within chip as they are more scalable, reliable, and predictable. Buffered NoCs were

shown to consume significant power and chip area. For instance, in the Intel Teraflops

chip and the MIT RAW chip, NoC fabric consumes around 30% and 36% power

respectively [5,6]. Focusing on a single NoC switch, a considerable fraction of power

and area is used by the internal buffers of the switch. In [7,8], the buffers within a

single switch consume around 37% power and 80% area. In addition to being heavy

power and area consumers, buffered NoCs are more complex to design as they require

extra handlers for packets placement and buffer overflow.

Bufferless NoC has emerged as a solution to decrease power and area requirements

[9,10,11,12]. Bufferless NoC eliminates the buffers used within switches; which has a

direct impact on power and area. In contrast to the traditional buffered NoC; when two

packets compete for the same output port, the allocator either drops or deflects

(misroute) the losing packet instead of buffering it. Dropped packet should be

retransmitted again. On the other hand, deflected packet follows a non-productive port.

Due to the hazards accompanying the dropping mechanism such as handling positive

(ACK)/negative (NACK) acknowledgement (NACK buffers [9], NACK network [11]),

storing the packet within the source node (extra storage), and retransmission (increase

the total network load), in this thesis, we adapt the deflection approach.

Even though bufferless NoCs have their advantages regarding area and power

consumption, they have their own problems. Eliminating buffers helps in decreasing the

chip area and limiting the consumed power, but at the same time, the flits have no place

to reside in case of port contention which leads to dropping or deflecting the flits. This

dropping/deflecting mechanism results in increasing the NoC traffic volume which in

turn consumes link bandwidth.

Both mechanisms under low to medium rates lightly affect the performance (packet

latency and deflection count) leading to a performance approaching buffered NoCs. On

the other hand, under high injection rates, the number of packets increases leading to

more contention, as a result, using bufferless NoCs leads to reducing the total available

bandwidth (as a result of increasing the traffic volume due to retransmitting the flits or

deflecting the flits away from their destination) which eventually leads to a

performance worse than buffered NoCs. Thus, bufferless NoC is shown generally to

function efficiently under moderate loads and smaller NoC sizes [10].

In this thesis, we study several aspects of bufferless NoC to serve latency-sensitive

applications. In other words, we aim to operate latency-sensitive applications on

2

Figure 1: Generic switch in a 2D mesh

bufferless NoCs under high injection rates without inducing extra power or chip area

usage. This work follows three tracks; enhancing performance through output selection

functions, enhancing performance through flit ranking policies, and finally, enhancing

performance through congestion prevention.

1.1. Basic Background

In this section, we formally introduce some notations that shall assist in describing

the scope and contribution of this work. Specially: (1) buffered NoCs, (2) bufferless

NoCs, (3) selection functions, (4) maximum flexibility, (5) flit ranking policies, and (6)

congestion management. We now discuss these topics briefly.

1.1.1. Buffered NoCs

A 2D buffered NoC is a two dimensional array of nodes. Each node is connected to

the network using a switch. The switches are connected in a multiple point-to-point

fashion. Switches forward the data to/from the nodes and/or switches over links. Each

link is equipped with input and output buffers. The data is delivered as packets where

each packet is divided into several flow control units called flits. Topology defines the

networks logical layout (connections). A sample switch in a 2D mesh is shown in

Figure 1.

Buffered NoCs are used widely as a communication fabric. To handle the

contention that may occur between two flits arriving simultaneously at an output port,

buffered NoCs use the input buffer to store the incoming flits. By doing this, the switch

can store the flits that lost the arbitration and forward the winning flits.

Buffered NoCs have the drawback of consuming significant power and area. For

example, the NoC fabric in the Intel Teraflops chip and the MIT RAW chip consumes

30% and 36% respectively of the required power [5,6]. Also the network occupies large

chip area (for example, 80% area [7,8]) due to buffer usage. Beside consuming power

and area, buffered NoCs are complex to design due to the need to implement different

scenarios for handling the buffers logic. One way to reduce the required power and chip

area is to eliminate the buffers within the network; i.e. bufferless NoC.

3

1.1.2. Bufferless NoCs

Bufferless NoCs have been proposed to reduce the power and area consumption

and to simplify the design process. This is done by removing the input and output

buffers.

Bufferless NoCs handle the output port contention by either dropping the losing

packet or by deflecting it. Bufferless NoCs that use the dropping mechanism chooses to

drop the packet that lost the contention competition. By dropping the packet, bufferless

NoCs have to retransmit this packet which leads to an increase in the network traffic

and/or the hardware cost and design complexity.

The deflecting bufferless NoCs choose not to drop any contending packet. Instead,

bufferless NoCs forward all the incoming packets to output ports even if it means to

forward the packets through longer paths (non-productive ports). The deflecting

buffered NoCs are preferred due to their simpler design, and less power and area cost.

However, using bufferless NoCs can cause degradation in the performance. A

recent study [10] showed that the power and area gains exceed the degradation in the

network performance when NoC load is low to medium, which matches many of the

real-life applications.

1.1.3. Selection Functions

To route a packet successfully from a source node to a destination node, it is

required to have a routing function and a selection function. The routing function

calculates the path to follow between a source–destination pair and offers a set of

output ports to get closer to the destination. The selection function selects an output

port from the supplied set of ports.

Routing could be classified as deterministic or adaptive based on the selection

function. Routing is deterministic if the selection function delivers the same port for

each source-destination combination each time. On the other hand, routing is adaptive

if the selection function delivers a port based on the network state, thus the selection

function may deliver different port each time it is used [3].

Many selection functions exist for 2D meshes such as Straight Line (similar to

dimension order routing DO) which favors X (or Y) dimension than Y (or X) till no

more steps left in X (or Y) and then alternate to the other dimension i.e. Y (or X).

Another selection function is Random Productive Port which selects one of the flit’s

productive ports randomly. One of the well-known selection functions is Maximum

Flexibility.

1.1.4. Maximum Flexibility Selection Function

Maximum Flexibility (MaxFlex) is a selection function that is similar to the z
2

routing proposed in [13]. It selects the output port on the dimension with more hops to

the destination (i.e. longest distance to the destination). By doing this, MaxFlex

maximizes the number of productive ports provided by the routing function as the flit

approaches its destination. In other words, MaxFlex prevents the flit from being stuck

in one dimension leading to one productive port only.

MaxFlex tries to move the packets on a diagonal between the source and the

destination. Packet initially follows the dimension with higher hop count. When it

reaches a switch where the difference in the X-dimension is equal to the difference in

4

the Y-dimension, it follows the diagonal. The path of the diagonal is dependent on the

step size used. Step size of SS means that a packet moves SS steps in X-dimension and

then SS steps in Y-dimension.

MaxFlex causes the traffic to be concentrated in the central part of the network

bisection as it tries to move on the diagonals. This leads to uneven switches utilization

which degrades the performance [14].

1.1.5. Flit Ranking Policies

Under normal operation, a NoC switch can receive several flits at the same cycle

from the neighboring switches and/or from the node connected to it. For example, if a

switch, in a 2D mesh topology, is connected to four switches, it can receive up to

maximum five flits at the same cycle. Each flit has its own destination and wants to

pass through its productive port i.e. wants to get closer to its destination. How the

switch determines the order by which it will serve the incoming flits is determined by

the ranking policy. In other words, it determines which flit can select an output port

first.

Different ranking policies lead to different service order for the flits travelling

through the NoC. To be more specific, different policies lead to different arrival order

for the NoC flits which leads to a different set of flits reaching their destination before

the others. The delivery of a certain set can result in a better performance but this is not

the only factor. Flit ranking schemes have a direct effect on livelock property in the

NoC [3,4]. Some schemes can result in packets travelling indefinitely the NoC and

never reaching their destinations.

In bufferless NoC, due to the buffers elimination, the ranking policies have a

greater effect on the overall performance as the flit that fails to get its productive port

will be forced to take a detour.

Different criteria can be used as ranking policies. For example; Oldest First (OF)

policy ensures there is a total age order among flits and prioritizes older flits, Closest

First (CF) policy prioritizes the flits with smaller distance to their destinations before

flits whose remaining distance is larger, Most Deflections First (MDF) policy gives

higher priority to the flits with more deflections, and Round Robin (RR) policy ranks

the flits from different input ports in a round robin fashion.

1.1.6. Congestion Management

Under high injection rates, the traffic volume in the NoC increases causing more

strain on the NoC links and buffers. When the NoC reaches a point where the buffers

and the links are occupied and can’t handle the traffic load, then the NoC is said to be

congested. Under congestion, the NoC can’t function properly and can’t retain its

normal performance. Specifically, the flits simply continue roaming in the NoC without

reaching their destinations which increases the traffic volume and prevents the injection

of new flits (i.e. nodes starvation).

In bufferless NoC, the congestion can arise and develop more quickly and severely

as the links are the only available buffering resources. Bufferless NoCs have been

shown to function efficiently under moderate loads and smaller NoC sizes [10]. But

under high injection loads and due to the lack of buffers, bufferless NoCs fail to operate

and scale efficiently causing a collapse in the overall performance. This prevents

5

bufferless NoCs from competing with buffered NoCs performance especially under

high injection rates.

To tackle the congestion in a NoC, one of the approaches is to detect the

congestion and then control its effect to retain the normal NoC behavior. Another

approach is to provide the needed resources and take various measures to prevent the

congestion from forming in the first place.

1.2. Related Work

In this section we summarize the previous work done related to bufferless NoCs

and to our work specifically. We list the different algorithms, techniques and ideas

related to bufferless routing algorithms, output port selection functions, flit ranking

policies, and congestion management. We survey these topics state-of-art briefly.

Concerning bufferless routing, several previous works examined the use of both

dropping and deflecting routing approaches in bufferless. [9,15,11] proposed dropping

based routing algorithms where the packets with low priority are dropped once a port

contention occurs. These previous studies suffered extra performance loss given the

fact that they require a separate network for the ACK/NACK packets delivery, and they

induce extra traffic load due packet retransmission. In order to reduce the packet

dropping, [16] proposed a selective packet-dropping routing. In [10], a set of deflecting

routing algorithms for bufferless routing (BLESS) was proposed. This study used real

applications and synthetic workloads to evaluate the network energy consumption,

performance, latency, and area requirements of bufferless routing. Their algorithms

resulted in around 40% energy reduction with a small degradation in the performance

under light traffic. Also, the algorithms save around 60% of area requirements.

However, in [12], BLESS was shown to be complex for hardware implementation due

to its output allocator. The work done in MaS [17] solved some of the drawbacks in

[12] by using packet-sized buffer at each switch which is used to hold the packet with

higher priority in case of contention thus decreasing the receiver side buffering

requirements caused by the out-of-order delivery of BLESS (caused by either the

truncation or by considering each flit as a head flit) by 80%. Also, MaS achieves better

average packet latency and average power consumption compared to BLESS by 10%

and 9% respectively. Also, in [18], a simplified bufferless router (CHIPPER) was

presented, in which a permutation network was designed to solve the output allocation

problem in BLESS. However, its deflection rate is high at the medium-to-heavy traffic

load. Several works [19,20,21] have been proposed to reduce the packet deflections by

adding a few buffers. In [20], a hybrid bufferless router (MinBD) was presented, in

which a bufferless router is combined with a small side-buffer. In addition, a buffer

controller was designed for identifying the packets which would be deflected and are

needed to be temporarily stored in the side-buffer. While in [19], a hybrid bufferless

router with an adaptive flow control (AFC) was presented, in which the routing scheme

switches between the buffered and bufferless routing according to the network load.

However, using buffers in [19,20,21] weakens the primary advantage of the bufferless

NoC in cost and energy. The authors in [22] approached the problem by trying to

decrease the deflection count as a cause for the performance degradation in bufferless

NoCs. They constructed three deflection models to analyze the deflection causes, and

proposed a deflection routing based on turn model to reduce the deflections during

packet transmissions. The experimental results for [22] showed a reduction in the

deflection rate by 41% compared to other bufferless networks.

6

As for the selection functions, in [13], the authors proposed zigzag (z
2
) selection

function (the inspiration for MaxFlex) as an optimal selection function for mesh

topology. However, in [14,23,24], the authors analyzed different selection functions for

mesh topology and found that z
2
 is not the best for this topology. [25] presented a

topology-independent selection function. None of the previous studies evaluated the

MaxFlex on bufferless NoCs or evaluated the effect of changing the value for the used

step size. Other studies focused their attention on other topologies such as fat-trees. [26]

was the first to propose and evaluate different selection functions for fat-trees. The

study showed that a selection function dependent on current switch address and

destination address (SADP) has slightly better performance in case of uniform traffic as

it balances the load on the links. The authors in [27] proposed and analyzed a selection

function dependent on the stage and the source node (SAOP) that outperformed other

selections functions in hot-spot traffic. In [28], the authors proposed a cost-efficient

congestion management mechanism for fat-trees that detects the current traffic pattern

and switch to a certain selection function that is proved to give better performance

under the detected traffic pattern. The work done in [29] proposed Cool Centers

Priority (CCP) selection function for buffered 2D meshes to eliminate hot-spots, and to

guarantee load balancing.

Concerning flit ranking policies, in [30], the authors showed that ranking-based

policies using global or history-related criterion are beneficial in a deflection-based

NoC. [10] evaluated several flit ranking polices (OF, CF, MDF, and RR) under BLESS

and selected OF as their primary ranking policy as it is guaranteed to avoid livelock.

However, the authors in [22] chose MDF as their main ranking policy as they aimed to

decrease the overall deflection count.

Finally, for the congestion management, [31,32,33] were proposed to adjust the

network load. These previous studies controlled the injection rate of each node, and

restricted the injection of latency-insensitive processing node if the network load

becomes heavy. However, these studies lacked the detailed understanding of the

workloads, which made the system design more difficult. In [34], the authors proposed

a distributed congestion control mechanism (Cbufferless) for bufferless NoC. This

study detected network congestion by monitoring deflection information of the flits and

used dynamic node throttling for the node(s) causing network congestion.

1.3. Scope of the Thesis

This thesis has three main directions regarding bufferless NoCs. These three

directions aim for a performance similar to buffered NoCs under high injection rates.

The first direction targets the selection functions specifically MaxFlex. It reduces the

packet latency and the average deflection count via increasing and varying the used step

size. The second investigates the flit ranking policies. It enhances the performance via

using policies that exploit the properties of the bufferless NoCs specifically the

deflection behavior. Finally, the third direction aims to relax the NoC congestion. It

achieves that by giving more space for the flits to roam and/or organizing the

applications’ injection behavior. In each direction, we propose new approaches that

enhance the performance while trying to keep the area and the power intact.

7

1.3.1. Increasing and Varying Step Size Under MaxFlex

The first direction of this thesis focuses on enhancing the traffic distribution under

MaxFlex in order to decrease port contention in 2D bufferless meshes. Typical

MaxFlex (Step Size = 1) tends to focus the traffic on the NoC diagonal (central part)

which leads to increase in the port contention and as a result increases the deflection

count and the packet latency. In Chapter 3, we present a study, both analytical and

experimental, on the effect of increasing the step size under MaxFlex on the traffic

distribution and eventually on the overall performance. We also propose the ideal step

to use under different mesh sizes.

For the analytical part; we identify 12 types of traffic that constitute collectively

the MaxFlex traffic in the network. The analysis shows that increasing the step size

leads to a better load distribution over the NoC switches. In other words, the central

part of the network bisection becomes more relaxed.

Then, we simulate a 10x10 mesh under uniform traffic and use step size values

ranging from 1 to 9 to check the effect the NoC performance. The results show that

increasing the step size leads to better packet latency and smaller deflection count thus

enhancing the NoC performance. To be exact, using a fixed step size of 8 enhances the

packet latency and the deflection count by 95% and 38% respectively compared to

using Straight Line selection function. Also, for different mesh sizes, simulation results

show that a step size of 60-80% of the mesh dimension leads to better performance.

In Chapter 4, we address the idea of using different step size for each packet. By

using variable step size, we tend to further enhance the traffic distribution aiming to

utilize more links and hence decrease the contention and the deflections. We propose

different formulas for determining the variable step size value for each packet. Each of

the proposed formulas is devised to be a function in the distance between the source

and destination. The formulas fall into one or more of the following categories;

formulas that consider the distance between the source and destination as nodes,

formulas that consider assigning the NoC nodes to virtual regions and then consider the

distance between the source and destination regions, and finally, formulas that also use

the regions concept but differ between in-region and out-region routing.

Simulating these formulas under 10x10 mesh conforms that varying the step size

(using a valid formula) leads to better distribution for the flits among the NoC links

thus better NoC performance. Specifically, the results show that using a variable step

size can enhance the results over using a fixed step size of 8 by up to 29%. The results

come in line with the analytical results of increasing the fixed step size.

1.3.2. Evaluating Flit Ranking Policies

In this direction, we exploit the deflecting bufferless NoCs properties to provide

better performance. Based on the results from the fixed/variable step size study and

from recent bufferless NoC study [22], in Chapter 5, we study the effect of the flit

ranking policies on 2D bufferless meshes’ performance, and propose various policies

tailored to decrease the flits’ deflections in the NoC. In other words, the proposed

approaches favor the flit with more deflections as extra detouring for this flit leads to

extra delay thus increasing the overall packet latency.

We investigate the usage of the flit’s deflection count along with its age and the

distance between its source and destination. Also, we develop an enhancement over the

proposed policies. The enhancement favors the flit with steps in one direction only as

any deflection shall result in at least two hops to correct its path.

8

We simulate a 10x10 mesh using the enhanced deflection-based approaches. The

experiments show that proposed policies lead to better performance. Specifically, using

the proposed enhancement along with the proposed policies decreases the packet

latency by 58% compared with using fixed step size MaxFlex with Oldest First ranking

policy.

1.3.3. Preventing the Congestion

The final direction aims to prevent the bufferless NoC congestion. In Chapter 6, we

study the congestion in bufferless NoCs, and propose two mechanisms for preventing

the congestion development. Both of the proposed mechanisms prevent the congestion

by providing more space for the flits to move by decreasing and/or dividing the traffic

volume.

We investigate how to relieve the traffic volume thus preventing the congestion

from developing in the first place. To be able to do that, we provide more links

bandwidth to the flits so that they have more freedom in their movement towards their

destinations. We propose two mechanisms to perform this freedom.

First, we propose running the applications on a NoC larger than what is required.

For example, instead of running the application mix on a 3x5 mesh, we propose

running the same application mix on a 4x4 mesh. The idea behind this mechanism is to

take advantage of the extra links provided as a result of using the larger NoC thus

providing extra space for the flits to move with less competition with the other flits.

Second, we propose dividing the application mix into smaller sets, and then run the

smaller sets sequentially on the whole NoC. The smaller application mix in

combination with the sequential operation leads to injecting less data into the NoC in

each smaller run which directly affects the deflection count and the packet latency in a

positive way.

We simulate both mechanisms on a 10x10 mesh and measure the enhancements in

the performance. Using the proposed prevention mechanisms enhances the packet

latency and the deflection count by 61% and 68% respectively compared with using

fixed step size MaxFlex.

1.4. Contribution of the Thesis

With the increasing demand on mobile processing, two main engineering factors

come into sight: chip area and power. With the interconnection as an important element

of modern processors and a main contributor to chip area and power; the decision of

optimizing the interconnection area and power is one of the top-list goals in design.

In this thesis, we aim to make the bufferless NoCs work in a fashion similar to

buffered NoCs under high injection rates while keeping the area and power gains. We

optimize bufferless NoCs through adopting multiple approaches: enhance using

selection functions, enhance using ranking policies, and enhance using congestion

prevention. The proposed approaches aim to decrease the overall packet latency and

average deflection count. Additionally, the approaches aim to push the injection rate

boundary for the bufferless NoCs making it feasible in a wider range of practical

applications instead of using the heavy area and power consumer - the buffered NoCs.

First, we propose using larger step sizes under MaxFlex selection function (instead

of using a step size of one). We thoroughly analyze the MaxFlex under uniform traffic

and identified 12 types constituting the traffic. Through using larger step sizes, the

9

traffic concentration becomes more distributed among the center and border switches

leading to less contention among the flits. Using larger step sizes, we are able to use

bufferless NoCs under higher injection rates while keeping the average packet latency

and average deflection count feasible. We also propose novel approaches for using

variable step size for each flit instead of using fixed step size for all the flits. These

approaches utilize the NoC links better leading to even better performance. These

enhancements are achieved without using any extra buffers thus we keep the chip area

small. Also, we distribute the traffic leading to using more links but the frequency of

each link decreases which keeps the power usage in its normal figures.

Ranking policies aims to put an order for serving the flits. Knowing that the

deflection count for the flits plays a great role in the overall performance, we propose

several policies that aim to decrease the overall deflections resulting in better

performance. By devising polices based on the flits’ deflection count, we aim to favor

the flits that suffered more deflections while not causing extra new deflections for other

flits. Also, as in the selection functions, these ranking schemes don't use any extra

buffers leading to good area and power performances.

Finally, the main roadblock for bufferless NoCs is quickly becoming congested.

We propose novel mechanisms for preventing the congestion by mitigating the initial

cause for the congestion i.e. the traffic volume. As the traffic volume increases, and in

addition to the absence of buffers, the flits have to compete with each other more

frequently leading to more deflections and thus detouring. This unneeded detours make

the flits travel in the NoC without reaching their destinations. The proposed

mechanisms prevent the congestion by decreasing the traffic volume via using larger

NoC or via organizing the applications work load. The proposed mechanisms fit the

latency-sensitive applications that can be divided and allocated to different parts of the

NoC. By organizing the applications allocation and operation, we achieve low packet

latency and deflection count while keeping feasible power and area figures.

1.5. Organization of the thesis

This thesis is organized as follows. Chapter 2 explains the preliminaries of the

concepts adopted in this thesis. In Chapter 3, we analyze and simulate the usage of

fixed step size greater than one under MaxFlex. Chapter 4 presents a study for the use

of variable step size under MaxFlex. In Chapter 5, we propose several flits ranking

policies and show their performance. Chapter 6 addresses the congestion problem in

bufferless NoCs by proposing and evaluating two congestion prevention mechanisms.

Finally, in Chapter 7 we summarize our findings and make some concluding remarks

concerning the current and future work.

11

Chapter 2 : Background

In this chapter, we present some preliminaries and concepts that are used in this

thesis. We start with interconnection networks in Section 2.1. In Section 2.2 and

Section 2.3, we discuss Network-on-Chip and bufferless Network-on-Chip respectively.

Section 2.4 explains the idea behind selection functions. Then, Section 2.5 discusses flit

ranking policies and their use. Finally, congestion management is discussed in Section

2.6.

2.1. Interconnection Network

Figure 2: Example of interconnection network

An interconnection network is a programmable system that transports data between

terminals. The interconnection network system is composed of buffers, channels,

switches, and controls that function together to deliver data. Figure 2 shows an example

for an interconnection network with four terminals () connected to it. To

communicate with terminal , sends a data message into the network and the

network delivers the message to , where and .
The network is considered programmable as it makes different connections at

different points in time. For example, the interconnection network in Figure 2 can send

a message from T2 to T3 in one cycle and then send a message from T2 to T1 in the

next cycle using the same resources.

Many systems with different scale fall under the above definition. For example, on-

chip networks can deliver data between memory, registers, and arithmetic modules

within a processor. On the other hand, system-level networks connect processors,

memories, input/output (I/O) ports. Finally, local-area and wide-area networks connect

different systems together within an enterprise or across large geographical distance.

Interconnection networks can be found in almost all digital systems. Specifically,

in computer systems, they connect processors to memories and I/O devices to I/O

controllers. While, in communication switches and network routers, they connect input

ports to output ports. Also, they connect sensors and actuators to processors in control

systems.

Around the late 1980s, most of the mentioned systems used the bus architecture as

their interconnection network. However, recently all high-performance interconnections

11

Figure 3: Generic switch in a 2D mesh

use point-to-point interconnection networks rather than buses. This change is due to the

inability of buses to keep up with the enhanced processor performance and the

bandwidth demand. On the other hand, point-to-point interconnection networks operate

faster than buses.

Interconnection networks are important because they are a limiting factor in the

performance of many systems. The interconnection network connecting processor and

memory largely determines two main performances metrics in a computer system,

namely, the memory latency and memory bandwidth. In communication switches, the

performance of the interconnection network determines the data rate and the number of

ports of the switch.

2.2. Network-on-Chip (NoC)

In a chip multiprocessor (CMP) architecture, the NoC generally connects the

processor nodes and their private caches with the shared cache modules and memory

controllers. In a typical NoC, each node has a high-speed buffered switch that connects

the node to its neighbors by links. The width of a link varies. Nodes send and receive

packets; typical packets are small request and control messages, such as cache block

read requests, and larger data packets containing cache block data. Packets are

partitioned into flits which are the atomic unit of traffic. Flits have size equal to the

width of a link. Typically, links have a latency of only one or two cycles, and are

pipelined, so that they can accept a new flit every cycle.

NoC topology defines the networks logical layout (connections). Various NoC

topologies exist, but the most used topology is the 2D mesh [3,4], which is

implemented in several commercial products [35,36] and research prototype many-core

processors [7,37,38]. In mesh topology, each switch has maximum of 5 input and 5

output channels/ports; one from each neighboring switch and one from the node

connected to it. A sample switch in a 2D mesh is shown in Figure 3.

Since the switch plays a crucial role in the NoC, its design needs to be simple to

simplify the overall NoC design. As a result, current implementations tend to use

simple routing algorithms. The most common routing algorithm is Dimension Order

routing (DO) which route the flit first along the X direction until the destination’s Y

coordinate is reached; then route to the destination in Y direction.

NoC has a set of characteristics that differentiate it from the traditional networks.

We summarize these characteristics in the following points:

12

1) Topology: The topology is statically known, and usually very regular. A

change in topology impacts various aspects, such as routing and traffic-load.

2) Latency: Links and switches have latency much lower than traditional

networks.

3) Routing: Routing logic is designed to minimize the complexity and the latency

as the NoC switch stages must take no more than a few cycles.

4) Coordination: Global coordination is possible and often less expensive than

distributed adaptive mechanisms, due to a relatively small known topology,

and low latency.

5) Links: Links are expensive in terms of both hardware complexity and on-chip

area.

6) Traffic Patterns: Cache miss behavior of the running applications drive traffic

patterns in a NoC.

7) Power: The existence of a constrained power budget differentiates NoCs from

traditional networks.

2.3. Bufferless Network-on-Chip

Recent work has shown that it is possible to eliminate buffers from the NoC

switches. In such bufferless NoCs, application performance degrades minimally for

low-to-moderate network intensity workloads, while some work shows that power

consumption decreases by 20-40%, router area on die is reduced by 75%, and

implementation complexity also decreases [10]. While other evaluations have shown

that optimizations to traditional buffered router designs can make buffers more area-

and energy-efficient [12], bufferless design techniques such as those in [18,20,17,22]

address inefficiencies in bufferless design. In a bufferless NoC, the general system

architecture does not differ from traditional buffered NoCs. However, the lack of

buffers requires different injection and routing algorithms in the network.

As in a buffered NoC, a bufferless NoC injects and routes flits synchronously

across all nodes/switches. The node is able to inject each flit of the packet into the

network as long as one of its output links is free. Injection requires a free output link as

there is no buffer to hold the packet in the switch. If no output link is free, the flit

remains queued inside the node. A flit is routed to a neighbor based on the routing

algorithm, and the arbitration policy.

Flits are arbitrated to output ports based on the required direction and the ranking

policy used. If flits contend for the same output port, their ranks are compared, and the

one with higher rank (priority) obtains the port. The other contending flit(s) are either

dropped or by deflected.

Bufferless NoCs that uses the dropping mechanism chooses to drop the packet that

lost the contention competition. By dropping the packet the NoC has to retransmit this

packet which leads to an increase in the network traffic and/or the hardware cost and

design complexity.

The deflecting bufferless NoCs choose not to drop any contending packet. Instead,

it forwards all the incoming packets to output ports even if it means to forward the

packets through longer paths (non-productive ports). The deflecting buffered NoCs are

preferred due to its simpler design and less power and area cost. An example for a

deflecting bufferless NoC is BLESS [10].

Previous work [10] has shown significant reductions in chip power and area from

eliminating buffers in the NoC, however, that work has focused primarily on low-to-

13

Figure 4: The operation of MaxFlex selection function using step size of one

medium network load. Higher levels of network load remain a challenge, and

improving performance in these cases increases the applicability of bufferless NoCs.

Furthermore, as the size of the CMP increases, the efficiency gains from bufferless

NoCs become more important.

2.4. Selection Functions

A routing algorithm is divided into two functions: routing function and

selection function. The routing function provides a set of productive output ports

based on the current node and the destination node. The selection function

selects from this set based on the status of the output ports at the current node.

This selection is performed in such a way that a free channel (if any) is supplied.

The routing function determines whether the routing algorithm is deadlock-free

or not. However, the selection function only affects performance.

There are two ways to perform the selection: the selection function can

ignore the network state, for example, the selection can be random; or the

selection can take into account the status of output ports and channels at the

current node. Obviously, the selection second approach is better as it works

based on some sort of feedback from the NoC.

When several output ports are available, some policy is required to select

one of them. Policies can have various goals, for example, balancing the use of

resources, reserving some bandwidth for high-priority packets, or even delaying

the use of resources to be used for deadlock avoidance. However, under any

policy, the selection function should give preference to ports belonging to

minimal paths i.e. productive ports. Otherwise the selection function may

produce livelock.

14

Various selection functions exist for dimensional meshes with the goal of

maximizing performance. Three of the well-known selection functions are

Minimum Congestion (MinCon), Maximum Flexibility (MaxFlex), and Straight

Line (SL).

In MinCon, a virtual channel is selected in the direction with the most

available virtual channels. This selection function works with buffered NoCs and

tries to balance the use of virtual channels in different physical channels. The

idea behind this selection function is since the packet transmission is pipelined,

then flit transmission rate is limited by the slowest stage in the pipeline.

Balancing the use of virtual channels balances the bandwidth allocated to

different virtual channels.

In MaxFlex, a channel (physical or virtual) is selected in the dimension with

the greatest distance to travel to the destination. This selection function tries to

maximize the number of routing options as a packet approaches its destination.

This selection function can perform under both buffered and bufferless NoCs.
Specifically, MaxFlex first moves the flit till the number of hops left in the X-

dimension is equal to the number of hops left in the Y-dimension. After that, MaxFlex

moves the flit one step on the X-dimension and then one step on the Y-dimension i.e.

MaxFlex tends to move the flit on a diagonal. Figure 4 shows the operation of MaxFlex

selection function.

In meshes, MaxFlex selection function concentrates the traffic in the central

part of the network bisection producing uneven channel utilization which

degrades the NoC performance. This downside has more effect in buffered NoCs

than in deflection-based bufferless NoCs due to the lack of buffers and the

deflecting behavior in the latter case. The absence of buffers forces the flits to be

deflected, in contrast to moving into one of the available buffers (in case of

buffered NoCs). This deflection behavior moves small portion of the traffic

away from the central NoC switches, thus decreasing the concentration.

Finally, in SL, a channel (physical or virtual) is selected in the dimension

closest to the destination. So, the packet travels in the same dimension whenever

possible. This selection function tries to route packets in dimension order unless

the requested port in the corresponding dimension is not available. This selection

function can perform under both buffered and bufferless NoCs. In meshes, this

selection function achieves a good distribution of traffic across the network

bisection as it tends to move the traffic more towards the NoC borders.

2.5. Flit Ranking Policies

As mentioned above, routing algorithms compute the productive port(s) to move

the flit from the current switch to the destination switch via a routing function, and then

select the output port for the flit via a selection function. If multiple flits simultaneously

request the same output port, some sort of arbitration must be provided between them.

Different arbitration approaches can be used to allocate the required channel

bandwidth including random, round robin (RR), or ranking policies. For random

selection, any flit is selected randomly without considering the NoC status. For RR

selection, output ports are arranged in a circular list. When a port transfers a flit, the

next port in the list is selected for the next flit transmission. Finally, ranking policies

15

uses various criteria to determine which flits should be served first. Ranking policies

require some information to be carried in each flit to be used as thee ranking criterion.

Different criteria can be used as ranking policies. For example; Oldest First (OF)

policy ensures there is a total age order among flits and prioritizes older flits, Closest

First (CF) policy prioritizes the flits with smaller distance to their destinations before

flits whose remaining distance is larger, and Most Deflections First (MDF) policy gives

higher priority to the flits with more deflections.

Different arbitration (and ranking policies) leads to different service order for the

flits travelling through the NoC. To be more specific, different arbitration leads to

different arrival order for the NoC flits which leads to a different set of flits reaching

their destination before the others. The delivery of a certain set can result in a better

performance but this is not the only factor. The selected arbitration has a direct effect

on livelock property in the NoC [3,4]. Specifically, an arbitration approach can result in

flits travelling indefinitely the NoC and never reaching their destinations.

In bufferless NoCs, due to the buffers elimination, the used arbitration approach

has a greater effect on the overall performance compared to buffered NoCs as the flit

that fails to get its productive port will be forced to take a detour. However, in buffered

NoCs, if the requested port is busy, the flit remains in the input buffer and shall be

routed again after the port is freed and if it successfully arbitrates for the port.

2.6. Congestion Management

Under high injection rates, the traffic volume in the NoC increases causing more

strain on the NoC links and buffers. When the NoC reaches a point where the buffers

and the links are occupied and can’t handle the traffic load, then the NoC is said to be

congested. Under congestion, the NoC can’t function properly and can’t retain its

normal performance. Specifically, the flits travel in the NoC without reaching their

destinations which increases the traffic volume and prevents the injection of new flits.

In bufferless NoC, the congestion can arise and develop quickly and severely as the

links are the only buffering resources. Bufferless NoCs have been shown to function

efficiently under moderate loads and smaller NoC sizes [10]. But under high injection

loads, and due to the lack of buffers, bufferless NoCs fail to operate and scale

efficiently causing a collapse in the overall performance. This prevents bufferless NoCs

from competing with buffered NoCs performance especially under high injection rates.

To tackle the congestion in a NoC, one of the approaches is to detect the

congestion and then control its effect to retain the normal NoC behavior. Another

approach is to provide the needed resources and take various measures to prevent the

congestion from forming in the first place.

The detection and control approaches apply heuristics and monitor the NoC

performance to detect the congestion once it arises. If congestion is detected, these

approaches apply a control mechanism to relieve the congested areas. The problem with

these approaches is that if the heuristics used to monitor the performance or the actions

taken to relieve the congestion are biased or excessive, the overall performance of the

system is affected.

On the other hand, the prevention approaches uses extra resources to decrease the

probability of developing the congestion. The idea is to use the extra resources to

provide other options for the flits in case of contention under high traffic volume. For

example, a buffered NoC can use extra buffers to host the flits in case of increased

traffic volume.

16

Chapter 3 : Modified Maximum Flexibility Selection

Function

As stated before, routing is composed of routing function and selection function.

Maximum Flexibility (MaxFlex) selection function [13] was introduced with the

advantage of maximizing the number of productive ports provided by the routing

function as the flit approaches its destination. However, MaxFlex selection function

uses a step size of one.

In this chapter, we investigate the effect of using a step size larger than one under

MaxFlex selection function. First, we propose the modified MaxFlex selection function

(MMaxFlex) and show its operation. Then, we provide a thorough analytical study for

MMaxFlex. In our analysis, we begin by analyzing the traffic in 2D meshes under

MMaxFlex for any step size. Then, we prove that any packet passing through a node

can be classified into one of twelve traffic types. Finally, we derive the count of packets

for each type passing through a switch. We also provide simulation results and explain

how it conforms to the analysis.

The chapter is organized as follows; Section 3.1 provides the motivation behind the

MMaxFlex, and how it works. Then, we analyze the effect of the step size under

MMaxFlex on the packets distribution in Section 3.2. In Section 3.3, we prove that any

packet under MMaxFlex passing through a switch can be classified into one of twelve

traffic types. We provide the effect of using MMaxFlex on the distribution of packets

within the NoC in Section 3.4. Sections 3.5 and 3.6 present the experimental setup and

the simulation results respectively. In Section 3.7, we estimate the value of the step size

based on the dimensions of the NoC. Finally, Section 3.8 makes some concluding

remarks.

3.1. Proposed Approach

MaxFlex selection function tends to alternate the flit’s movement on both

dimensions as a way to make more productive ports available for the flit. Specifically,

MaxFlex first moves the flit till the number of hops left in the X-dimension is equal to

the number of hops left in the Y-dimension. After that, MaxFlex moves the flit one step

on the X-dimension and then one step on the Y-dimension i.e. MaxFlex tends to move

the flit on a diagonal. Figure 5 shows the operation of MaxFlex selection function.

The main problem with MaxFlex is that it tends to concentrate the traffic on the

central part of the NoC leading to more contention between the flits to get the required

output ports, thus leading to more deflections in case of bufferless NoC. Eventually, the

flit takes more cycles to reach the destination i.e. higher average packet latency.

In this chapter, we propose a modified version of MaxFlex (MMaxFlex) to keep

the freedom provided by the MaxFlex selection function while relaxing the contention

on the central NoC switches. To achieve our goal, we incorporate the idea of the

Straight Line (similar to DO) selection function property to the MaxFlex selection

function. Straight Line selection function tends to focus the movement of flits on the

NoC’s border switches while MaxFlex tends to focus the movement of flits on the

NoC’s central switches (i.e. the switches in the middle of the NoC).

17

Figure 5: The operation of MaxFlex selection function using step size of one

As a result, we propose using MaxFlex with a step size greater than one. This

moves the traffic further towards the borders and decreases the concentration on the

NoC’s central switches. This approach leads to less contention and subsequently less

deflections and smaller packet latency. In the next section, we analyze MMaxFlex in

bufferless 2D meshes for any step size.

3.2. Analysis of MMaxFlex Selection Function

In this section, we study the effect of the step size on the distribution of packets

through bufferless two-dimensional mesh network. In doing that, for a certain

step size, we count the number of packets passing through each switch (all ports

included). To simplify the analysis, we divide the traffic going through a switch into 12

different types. Finally, we derive the number of passing packets belonging to each

type.

In the following analysis, we assume that:

1) Each node sends only one packet to each other node (i.e. each node sends

n
2
-1 packets)

2) Packet length is one Flit

3) No deflections (i.e. path of each packet is only affected by the value of step

size and not by misrouting due deflection). This assumption is set to ease

the analysis.

Before going into the analysis details, we present some definitions and

terminologies that are used throughout the analysis. First, we differentiate between

increasing and decreasing diagonals in a 2D mesh. Figure 6 shows both of the diagonal

types. In the decreasing diagonal, both the X and Y indices increases for each node

along the diagonal. In contrast, the X index increases while the Y index decreases for

each node along the increasing diagonal. A typical 2D mesh switch belongs to an

18

Figure 6: Increasing and decreasing diagonals in a 2D mesh

Figure 7: Up and down traffic in 2D mesh

increasing diagonal as well as a decreasing diagonal but not necessarily of same size

(Check Appendix A for more details).

Second, concerning the traffic moving on a diagonal, we divide such traffic to up

traffic and down traffic. Up traffic is the traffic from nodes with higher index to nodes

with lower index, where index is the position of the node in a NoC row or column or

diagonal (depends on the traffic type under study). On the other hand, down traffic is

the traffic from nodes with lower index to nodes with higher index. Figure 7 shows the

difference between up and down traffic.

In the following sub-sections, we study each traffic type separately. All the traffic

types fall under one of two categories:

1) Type resulted from a communication behavior not related to MaxFlex

exclusively

2) Type resulted from a communication behavior related to MaxFlex

19

The first category is concerned with the traffic types that can be a result of other

selection functions, not only MaxFlex. For example, this category can exist if Straight

Line selection function is used. However, the second category exists only due to the

unique behavior of MaxFlex operation.

The twelve traffic types are summarized as follows. Type 1 and Type 2 are

concerned with the traffic resulted from the ejection and injection respectively. Type 3

is a result of row nodes communicating with each other. Similarly, Type 4 is a result of

column nodes communicating with each other. All the previous types (1, 2, 3, and 4)

belong to the first category.

As for the second category, Type 5 is for the communication between the nodes

belonging to the same diagonal. Type 6 and Type 7 are similar to Type 5; however,

both of them are concerned with row or column nodes communicating with diagonal

nodes. Specifically, Type 6 focuses on the communication between row nodes and

diagonal nodes (movement on both row and diagonal switches), while Type 7 focuses

on the communication between column nodes and diagonal nodes (movement on both

column and diagonal switches).

Communication behavior described in Type 8, Type 9, and Type 10 is a result of

the effect of the communication that occurs in Type 5, Type 6, and Type 7 respectively.

For example, in Type 5, as the diagonal nodes do not have direct links between them,

the packet has to move through other switch (not belonging to the same diagonal under

study) to reach the next diagonal node. This kind of movement leads to affecting

switches other than the diagonal under study switches. Types 8, 9, and 10 are concerned

with such effect.

Also, as Type 6 and Type 7 involve row and column movement respectively beside

the diagonal movement; other non-diagonal (row and column) switches are affected by

such communication behavior. Type 11 and Type 12 are concerned with the effect

caused on row and column switches by Type 6 and Type 7 respectively.

Concerning the analysis, we note the following; since the communication behavior

on increasing diagonal is similar to the one done on decreasing diagonal, we focus our

analysis on increasing diagonals only. Additionally, as Type 6 and Type 7 are similar,

we analyze Type 6 in details. Following the same analysis, the equations related to

Type 7 are straight forward. This relation resembles the relation between Type 8, Type

9, and Type 10, and between Type 11 and Type 12. Finally, for all the types except

Type 8, Type 9, and Type 10, we derive equations for counting the number of packets

passing through a switch as a result of the type under study. For Type 8, Type 9, and

Type 10, we count the number of passing packets using pseudo code not equation for

its easier analysis and explanation.

For the analysis, we use the following terminology: For an nn mesh, let W(i,j) be

a switch located at index, where 1  i, j  n, and index is the position of the switch in a

NoC row or column or diagonal based on the traffic type under study. Let P be a packet

going from source node S(XSrc, YSrc) to destination D(XDst, YDst). Let
| | and | |. Now, we present the traffic 12 types going

through W(i,j). In each type, we describe the communication behavior, and the number

of packets (denoted as Count) passing through switch W(i,j) as a result of the type

under study.

3.2.1. Type 1 Packets

Description: Packets destined to node W(i,j).

Count:

21

Figure 8: Location of W(i,j) in 2D mesh row

Proof: Since there are n
2
-1 nodes sending packets to node W(i,j) as their

destination (check the assumptions), then the number of packets passing through

switch W(i,j) is equal to the number of packets ejected to node W(i,j).

3.2.2. Type 2 Packets

Description: Packets injected by node W(i,j).

Count:
Proof: Since node W(i,j) is sending one packet to each of the remaining n

2
-1 nodes

(check the assumptions), then the number of packets passing through switch W(i,j)

is equal to the number of packets injected by node W(i,j).

3.2.3. Type 3 Packets

Description: Packets passing through W(i,j) injected by node (i,k) and destined to

node (i,m) where 1  k, m  n and j  k  m (i.e. same row communication).

Count:

Where index is the position of W(i,j) in the row under study, .

Proof: In this type, as shown in Figure 8, switch W(i,j) belongs to a 2D mesh row

at position index. We have (index - 1) nodes before node W(i,j) and (n - index)

nodes after node W(i,j).

For the same row communication, the number of packet passing through switch

W(i,j) is a result of the following:

1) The nodes before W(i,j) send packets to the nodes after W(i,j) i.e. (index - 1)

* (n - index) packets.

2) The nodes after W(i,j) send packets to the nodes before W(i,j) i.e. (n -

index) * (index - 1) packets.

Hence, the overall count is 2 * (index - 1) * (n - index) packets.

Examples for illustrating traffic type three are shown in both Figure 9 and Figure

10. Figure 9 shows the value of index and Count for each row switch in 5x5 and

6x6 meshes. Also, it shows the number of packet passing through each switch as a

result of this traffic type. On the other hand, Figure 10 shows an example on how

to calculate the number of passing packets for a row switch in a 5x5 mesh. In

Figure 10, the number of packets passing through switch B(= 2, = 5)

equals 6 due to node A sending packets to nodes (C, D, E) i.e. 3 in addition to (C,

D, E) sending packets to A i.e. 3.

21

Figure 9: Type 3 example for a row in 5x5 and 6x6 meshes

Figure 10: Type 3 Count calculation for a row switch in a 5x5 mesh

3.2.4. Type 4 Packets

Description: Packets passing through W(i,j) injected by node (k,j) and destined to

node (m,j) where 1  k, m  n and i  k  m (i.e. same column communication).
 1

Count:

Where index is the position of W(i,j) in the column under study, .

Proof: The proof for this type is similar to the proof of Type 3.

3.2.5. Type 5 Packets

Description: Packets passing through W(i,j) as a result of communication between

nodes on the same diagonal as node W(i,j).

Count: 






 








 


SS

index
indexn

SS

indexn
indexCountCount DownUp

1
)'(

'
)1(

Where is the number of nodes in the diagonal under study, ; index is

the position of W(i,j) in the diagonal under study, ; and is the

value of the step size.

This equation counts the number of packets passing through a given increasing

diagonal switch W(i,j) under up traffic and down traffic.
 2

1
 Type 1, 2, 3, and 4 are not related to MaxFlex selection function only as these types will occur in

almost all routing algorithms under the same assumptions. In other words, no step size is involved in the
2
 Any of the following analysis (and proof) can be applied to both increasing and decreasing diagonals.

22

Figure 11: Location of W(i,j) in 2D mesh diagonal

Proof: We consider increasing diagonal for the proof; however, the same proof

applies to decreasing diagonal. In this type, as shown in Figure 11, switch W(i,j)

belongs to a 2D mesh diagonal with nodes. Switch W(I,j) is at position index.

We have (index - 1) nodes before node W(i,j) and (- index) nodes after node

W(i,j).

For the same diagonal communication, the number of packets passing through

switch W(i,j) is a result of the following:

1) Under up traffic, some of the nodes after node W(i,j) send packets to the

nodes before W(i,j) based on the step size SS used. Specifically, ⌊

⌋

nodes after W(i,j) send packets to the nodes before W(i,j). Hence, the

number of packets is (index - 1) * ⌊

⌋ packets.

2) Under down traffic, some of the nodes before node W(i,j) send packets to

the nodes after W(i,j) based on the step size SS used. Specifically, ⌊

⌋

nodes before W(I,j) send packets to the nodes after W(i,j). Hence, the

number of packets is (- index) * ⌊

⌋ packets.

Thus, the overall count is (index - 1) * ⌊

⌋ + (- index) *

⌊

⌋ packets.

23

Figure 12: Type 5 example for an increasing diagonal

Table 1: Up traffic passing through switch C

Source → Destination Pass W(i,j) or Not

D → B ×

D → A ×

E → B Pass

E → A Pass

F → B ×

F → A ×

In order to illustrate the Count calculations, in Figure 12, we show the up traffic

passing through switch C(= 3, = 6) i.e. traffic from (D, E, F) to (A, B) using step

size of two. Table 1 lists all the communication from (D, E, F) to (A, B) and whether

the packets to (A, B) will pass switch C or not.

Table 1 states that only two packets pass the red switch under up traffic i.e. Count

= 2. Also, applying the up traffic Count equation, the number of packets passing

through the switch C is two i.e. Count = 2 which matches the value deduced from Table

1.

Table 2 shows the Count values for the diagonal switches using different step sizes

under up traffic.

In a similar manner, in Figure 12, the down traffic passing through switch C(= 3,

 = 6) i.e. traffic from (A, B) to (D, E, F) using step size of two. Table 3 lists all the

communication from (A, B) to (D, E, F) and whether the packets to (D, E, F) will pass

switch C or not.

24

Table 2: Type 5 Count calculation for an increasing diagonal switches under up

traffic using different SS values

index SS = 1 SS = 2 SS = 3

1 0 0 0

2 4 2 1

3 6 2 2

4 6 3 0

5 4 0 0

6 0 0 0

Table 3: Down traffic passing through switch C

Source → Destination Pass W(i,j) or Not

A → D Pass

A → E Pass

A → F Pass

B → D ×

B → E ×

B → F ×

Table 4: Type 5 Count calculation for an increasing diagonal switches under down

traffic using different SS values

index SS = 1 SS = 2 SS = 3

1 0 0 0

2 4 0 0

3 6 3 0

4 6 2 2

5 4 2 1

6 0 0 0

Table 3 states that three packets pass the red switch under down traffic i.e. Count =

3. Also, applying the down traffic Count equation, the number of packets passing

through switch C is three i.e. Count = 3 which matches the value deduced from Table 3.

Table 4 shows the Count values for the diagonal switches using different step sizes

under down traffic.

25

Figure 13: Type 6 example for an increasing diagonal under both up and down

traffics

3.2.6. Type 6 Packets

Description: Packets passing through W(i,j) as a result of communication destined

to nodes on the same diagonal as node W(i,j) from nodes with YX  (i.e. leads

to moving on a row first).
 3

Figure 13 shows an example for the up and down traffic on increasing diagonal

under traffic Type 6. We divide the discussion of Type 6 into four separate sub-types to

ease the calculation for each of them. The sub-types are listed in the following sub-

sections.

3.2.6.1. Type 6 (a)

Description: Packets passing through switch W(i,j) as a result of row nodes

communicating with nodes with lower index on increasing diagonal i.e. up traffic.

Count:)
mod)(

1()1(
'











 


n

indexx SS

SSindexx
Qindex

If diagonal is below main diagonal i.e. ijn 1

xnQ 
Else

xnQ  '

3
 Types 6 and 7 are based on the behavior of any two nodes communicating using MaxFlex (except for

same row and column communication). In other words, any two communicating nodes will have to move

on a diagonal.

26

Figure 14: Location of W(i,j) in 2D mesh diagonal

Where is the number of nodes in the diagonal under study, ; index is

the position of W(i,j) in the diagonal under study, ; and is the

value of the step size.

Proof: We consider increasing diagonal for the proof; however, the same proof

applies to decreasing diagonal. In this type, we follow the same steps as in Type 5.

However, in Type 6, we focus on the communication between the row nodes and

the diagonal nodes.

In this type, as shown in Figure 14, switch W(i,j) belongs to a 2D mesh diagonal

with nodes at position index. We have (index - 1) diagonal nodes before node

W(i,j) and (- index) diagonal nodes after W(i,j). Also, there are (n – index) on the

same row as W(i,j) before node W(i,j).

For this type, under up traffic, each of the row nodes belonging to the (- index)

diagonal nodes after W(i,j) send packets to the (index - 1) diagonal nodes before

node W(i,j). For each of the diagonal nodes X(k,m) at position after W(i,j), if

X(k,m) communication with the (index - 1) nodes before W(i,j) passes through

W(i,j), then the row nodes belonging to the same row as the given node shall pass

W(i,j) as well i.e. nodes. Hence, the overall count for each of X(k,m)

in case it passes through W(i,j) is (index - 1) * packets.

In order to illustrate the Count calculations, in Figure 13, we show the up traffic

passing through switch CSolid(= 3, = 7, = 6) i.e. traffic from row nodes before

(CSolid, DSolid, ESolid) to (ASolid, BSolid) using step size of two. Table 5 lists all the

communication from (CSolid, DSolid, ESolid) rows to (ASolid, BSolid) and whether the packets

to (ASolid, BSolid) will pass switch CSolid or not.

27

Table 5: Up traffic passing through switch CSolid

Source → Destination Pass W(i,j) or Not

RowSolidC  → SolidA Pass

RowSolidC  → SolidB Pass

RowSolidD  → SolidA ×

RowSolidD  → SolidB ×

RowSolidE  → SolidA Pass

RowSolidE  → SolidB Pass

Table 6: Type 6(a) Count calculation for the solid diagonal switches under up

traffic using different SS values

index SS = 2 SS = 3

1 0 0

2 (5 + 3) (5 + 2)

3 (4 + 2) + (4 +2) (4) + (4)

4 (3) + (3) + (3) (3) + (3) + (3)

5 (2) + (2) + (2) + (2) (2) + (2) + (2) + (2)

Table 7: Type 6(a) Count calculation for the dotted diagonal switches under up

traffic using different SS values

index SS = 2 SS = 3

1 0 0

2 (3 + 1) (3)

3 (2) + (2) (2) + (2)

4 (1) + (1) + (1) (1) + (1) + (1)

5 0 0

Table 5 states that twelve packets pass switch CSolid under up traffic (Count = 4 + 4

+ 2 + 2 = 12). Also, applying the Count equation, the number of packets passing

through switch CSolid is twelve (Count = (3 – 1) * ((7 – 3) * 1 + (7 – 4) * 0 + (7 – 5) * 1)

= 2 * (4 + 0 + 2) = 12) which matches to the value deduced from Table 5.

We show the Count values for the solid and dotted diagonal switches under up

traffic using different step sizes in Table 6 and Table 7 respectively.

3.2.6.2. Type 6 (b)

Description: Packets passing through switch W(i,j) as a result of row nodes

communicating with nodes with higher index on increasing diagonal i.e. down

traffic.

Count:)
mod)(

1()'(
1











 


index

x SS

SSxindex
Qindexn

28

Table 8: Down traffic communication passing through switch DDotted

Source → Destination Pass W(i,j) or Not

RowDottedA  → DottedE Pass

RowDottedB  → DottedE ×

RowDottedC  → DottedE ×

RowDottedD  → DottedE Pass

Table 9: Type 6(b) Count calculation for the dotted diagonal switches under down

traffic using different SS values

index SS = 2 SS = 3

1 (2) + (2) + (2) + (2) (2) + (2) + (2) + (2)

2 (3) + (3) + (3) (3) + (3) + (3)

3 (2 + 4) + (2 + 4) (4) + (4)

4 (3 + 5) (2 + 5)

5 0 0

Table 10: Type 6(b) Count calculation for the solid diagonal switches under down

traffic using different SS values

index SS = 2 SS = 3

1 0 0

2 (1) + (1) + (1) (1) + (1) + (1)

3 (2) + (2) (2) + (2)

4 (1 + 3) (3)

5 0 0

If diagonal is above main diagonal i.e. ijn 1

'1 nnxQ 
Else

1 xQ
Where is the number of nodes in the diagonal under study, ; index is

the position of W(i,j) in the diagonal under study, ; and is the

value of the step size.

Proof: The proof for this type is similar to the proof of Type 6(a).

In order to illustrate the Count calculations, in Figure 13, we show the down traffic

passing through switch DDotted(= 4, = 7, = 5) i.e. traffic from row nodes before

(ADotted, BDotted, CDotted, DDotted) to EDotted using step size of three. Table 8 lists all the

communication from (ADotted, BDotted, CDotted, DDotted) rows to EDotted and whether the

packets to EDotted will pass switch DDotted or not.

Table 8 states that seven packets pass switch DDotted under down traffic (Count = 2

+ 5 = 7). Also, applying the Count equation, the number of packets passing through

switch DDotted is twelve (Count = (5 – 4) * (2 * 1 + 3 * 0 + 4 * 0 + 5 * 1) = 1 * (2 + 5) =

7) which matches to the value deduced from Table 8.

29

We show the Count values for the dotted and solid diagonal switches under up

traffic using different step sizes in Table 9 and Table 10 respectively.

3.2.6.3. Type 6 (c)

Description: Packets passing through switch W(i,j) as a result of row nodes

communicating with nodes with lower index on decreasing diagonal i.e. up traffic.
4

Count:)
mod)(

1()1(
'











 


n

indexx SS

SSindexx
Qindex

If diagonal is above main diagonal i.e. ij 

xnQ 
Else

xnQ  '

Where is the number of nodes in the diagonal under study, ; index is

the position of W(i,j) in the diagonal under study, ; and is the

value of the step size.

Proof: The proof for this type is similar to the proof of Type 6(a).

3.2.6.4. Type 6 (d)

Description: Packets passing through switch W(i,j) as a result of row nodes

communicating with nodes with higher index on decreasing diagonal i.e. down

traffic.

Count:)
mod)(

1()'(
1











 


index

x SS

SSxindex
Qindexn

If diagonal is below main diagonal i.e. ij 

'1 nnxQ 

Else

1 xQ

Where is the number of nodes in the diagonal under study, ; index is

the position of W(i,j) in the diagonal under study, ; and is the

value of the step size.

Proof: The proof for this type is similar to the proof of Type 6(a).

3.2.7. Type 7 Packets

Description: Packets passing through W(i,j) as a result of communication destined

to nodes on the same diagonal as node W(i,j) from nodes with YX  (i.e. leads

to moving on a column first).
5

4
 Types 6(c) and 6(d) are same as 6(a) and 6(b) but for decreasing diagonals.

5
 Type 7 is similar to Type 6 but for column nodes instead of row nodes.

31

Figure 15: Type 7 example for an increasing diagonal under both up and down

traffics

Figure 15 shows an example for the up and down traffic on increasing diagonal

under traffic Type 7. We divide the discussion of Type 7 into four separate sub-types to

ease the calculation for each of them. The sub-types are listed in the following sub-

sections.

3.2.7.1. Type 7 (a)

Description: Packets passing through switch W(i,j) as a result of column nodes

communicating with nodes with lower index on increasing diagonal i.e. up traffic.

Count:)
mod)(

1()1(
'











 


n

indexx SS

SSindexx
Qindex

If diagonal is above main diagonal i.e. ijn 1

xnQ 

Else

xnQ  '

Where is the number of nodes in the diagonal under study, ; index is

the position of W(i,j) in the diagonal under study, ; and is the

value of the step size.

Proof: The proof for this type is similar to the proof of Type 6(a).

3.2.7.2. Type 7 (b)

Description: Packets passing through switch W(i,j) as a result of column nodes

communicating with nodes with higher index on increasing diagonal i.e. down

traffic.

Count:)
mod)(

1()'(
1











 


index

x SS

SSxindex
Qindexn

31

If diagonal is below main diagonal i.e. ijn 1

'1 nnxQ 

Else

1 xQ

Where is the number of nodes in the diagonal under study, ; index is

the position of W(i,j) in the diagonal under study, ; and is the

value of the step size.

Proof: The proof for this type is similar to the proof of Type 6(a).

3.2.7.3. Type 7 (c)

Description: Packets passing through switch W(i,j) as a result of column nodes

communicating with nodes with lower index on decreasing diagonal i.e. up traffic.

Count:)
mod)(

1()1(
'











 


n

indexx SS

SSindexx
Qindex

If is diagonal below main diagonal i.e. ij 

xnQ 

Else

xnQ  '

Where is the number of nodes in the diagonal under study, ; index is

the position of W(i,j) in the diagonal under study, ; and is the

value of the step size.

Proof: The proof for this type is similar to the proof of Type 6(a).

3.2.7.4. Type 7 (d)

Description: Packets passing through switch W(i,j) as a result of column nodes

communicating with nodes with higher index on decreasing diagonal i.e. down

traffic.

Count:)
mod)(

1()'(
1











 


index

x SS

SSxindex
Qindexn

If diagonal is above main diagonal i.e. ij 

'1 nnxQ 

Else

1 xQ

Where is the number of nodes in the diagonal under study, ; index is

the position of W(i,j) in the diagonal under study, ; and is the

value of the step size.

Proof: The proof for this type is similar to the proof of Type 6(a).

3.2.8. Type 8 Packets

Description: Packets passing through W(i,j) as a result of communication between

nodes on a diagonal other than node W(i,j) diagonal.
6,7

6
 Types 8, 9, 10, 11 & 12 are concerned by the effect of adjacent nodes (row, column, diagonal)

communication on other nodes.

32

Figure 16: Type 8 example for an increasing diagonal in a 12x12 mesh

In this type, we start with an illustrating example instead of the order followed in

the previous sections of the analysis. From the example, we deduce the general

relations for this type.

In order to understand the effect and the behavior of some communicating nodes

on other switches and depending on the MaxFlex selection function default behavior

(i.e. move on X then Y), we check X between the switch under study and the node

originating the traffic.

In Figure 16, Consider switch A(= 4, = 1, = 12, =

10) and the switches on the left of it, where is the number of nodes in the diagonal

originating traffic, ; is the position of W(i,j) row in the

diagonal originating traffic, ; is the distance (number

of steps in X-dimension) from switch W(i,j) to the diagonal originating traffic; and is

the value of the step size. From Figure 16, we list the (X , Y) for the nodes

originating the traffic that affect the switch under study (switch A + switches on the

left) under down traffic in tables 11, 13, 14, and 15. Each of these tables is divided into

7
 The next analysis is the same for increasing and decreasing diagonals. Also, it is the same for up and

down traffic in the number of reached nodes formula.

33

Table 11: Down traffic passing through switch A

 = 1 (Switch A)

SS = 1 SS = 2 SS = 3 SS = 4

All (1,0) Right All (1,0) Right All (1,0) Right All (1,0) Right

All (2,1) Right All (2,1) Up One (2,1) Up One (2,1) Up

All (3,2) Right All (3,2) Right All (3,2) Up One (3,2) Up

All (4,3) Right All (4,3) Up All (4,3) Right All (4,3) Up

All (5,4) Right All (5,4) Right One (5,4) Up All (5,4) Right

Table 12: Summary for the data collected in Table 11

 = 1

X 8mod SS Number of Nodes Reached

0 All

1 All

2 One

3 One

> 3 One

Table 13: Down traffic passing through switch B

 = 2 (Switch B)

SS = 2 SS = 3 SS = 4

All (2,0) Right All (2,0) Right All (2,0) Right

× (3,1) × All (3,1) Up One (3,1) Up

All (4,2) Right × (4,2) × All (4,2) Up

× (5,3) × All (5,3) Right X (5,3) ×

All (6,4) Right All (6,4) Up All (6,4) Right

a group of columns for each step size value. Each group lists (X , Y) values for all

the originating nodes, how many diagonal nodes reached, and the port used to reach

these nodes.

From Table 11, we summarize the collected data based on X mod SS. The

summary lists all the values for X mod SS and whether any diagonal nodes are

reached or not. In case of reaching diagonal nodes, Table 12 lists the number of the

reached nodes.

From Table 12, we notice that if the X mod SS is zero or one, then all of the

intended diagonal nodes can be reached. However, if X mod SS is greater than one,

only one diagonal node can be reached. The following relations summarize out

findings.

8
 We monitored X value due to MaxFlex selection function default behavior i.e. move on X then Y.

34

Table 14: Down traffic passing through switch C

 = 3 (Switch C)

SS = 3 SS = 4

All (3,0) Right All (3,0) Right

× (4,1) × All (4,1) Up

× (5,2) × × (5,2) ×

All (6,3) Right × (6,3) ×

× (7,4) × All (7,4) Right

Table 15: Down traffic passing through switch D

 = 4 (Switch D)

SS = 4

All (4,0) Right

× (5,1) ×

× (6,2) ×

× (7,3) ×

All (8,4) Right

X mod SS  (0,1) then All
9

X mod SS > 1 then One
10

From Table 13 and in a similar manner to what was done in Table 11, we notice

that if the X mod SS is zero or two, then all of the intended diagonal nodes can be

reached. Also, if X mod SS equals one, then none of the diagonal nodes can be

reached. Finally, if X mod SS is greater than two, only one diagonal node can be

reached. The following relations summarize out findings.

X mod SS  (0,2) then All
11

X mod SS = 1 then × (Zero)

X mod SS > 2 then One

Similarly, in Table 14 and Table 15, we summarize our findings concerning X

mod SS and the number of diagonal nodes reached in the relations following each table.

From Table 14, we notice the following relations.

X mod SS  (0,3) then All
12

X mod SS  (1,2) then × (Zero)

X mod SS > 3 then One

From Table 15, we notice the following relations.

9
 Reach all nodes below or on same row as the switch under study (in this case 5 nodes)

10
 Reach the node on the same column only

11
 Reach all nodes below or on the same row as the switch under study (in this case 4 nodes)

12
 Reach all nodes below or on the same row as the switch under study (in this case 3 nodes)

35

Procedure Count

Inputs: i, j, SS, Xsrc, Xdst

Outputs: Count

Count = 0

// Nodes on diagonal

for i = 1 to n'

 // Nodes affected by nodes on diagonal from i to n'

 for j = 1 to SS

 // Nodes originating the traffic

 for index = i to n'

 if (ΔX mod SS)  (0, j)

 Count += (i – j)

 else if (ΔX mod SS > j)

 Count += 1

Figure 17: Procedure for counting the packets passing through a switch for Type

8(a)

X mod SS  (0,4) then All
13

X mod SS  (1,2,3) then × (Zero)

X mod SS > 4 then One

In order to generalize for , we consider all the relations deduced for each

 value discussed in the previous tables. From these tables and the deduced

relations, in Table 16, we calculate the number of reached diagonal nodes under up and

down traffic. Also, we calculate the X and Y index of the switch under study i.e. the

switch we calculate the number of passing packets for.

Additionally, we generalize the relations for under up and down traffic.

X mod SS  (0,) then All

X mod SS  (1,2 … -1) then × (Zero)

X mod SS > then One

For Type 8, we represent the formulas in form of pseudo code not an equation for

easier analysis and explanation. We present pseudo code for up traffic and other for

down traffic in the following sub-sections.

3.2.8.1. Type 8 (a)

Description: Packets passing through W(i,j) as a result of up traffic communication

between nodes on a diagonal other than node W(i,j) diagonal. This sub-type studies

the effect of Type 5 under up traffic on the switches adjacent to a given diagonal.

Count: To calculate the number of packets passing through a switch under up

traffic, we use the pseudo code in Figure 17.

13
 Reach all nodes below or on the same row as the switch under study (in this case 2 nodes)

36

Procedure Count

Inputs: i, j, SS, Xsrc, Xdst

Outputs: Count

Count = 0

// Nodes on diagonal

for i = 1 to n'

 // Nodes affected by nodes on diagonal from 1 to i

 for j = 1 to SS

 // Nodes originating the traffic

 for index = 1 to i

 if (ΔX mod SS)  (0, j)

 Count += (n' – i – j + 1)

 else if (ΔX mod SS > j)

 Count += 1

Figure 18: Procedure for counting the packets passing through a switch for Type

8(b)

3.2.8.2. Type 8 (b)

Description: Packets passing through W(i,j) as a result of down traffic

communication between nodes on a diagonal other than node W(i,j) diagonal. This

sub-type studies the effect of Type 5 under down traffic on the switches adjacent to

a given diagonal.

Count: To calculate the number of packets passing through a switch under down

traffic, we use the pseudo code in Figure 18.

3.2.9. Type 9 Packets

Description: Packets passing through W(i,j) as a result of communication destined

to nodes on a diagonal other than node W(i,j) diagonal from nodes with YX 

.
14

Similar to what was done in Type 8, for Type 9; we represent the formulas in form

of pseudo code for up traffic and down traffic in the following sub-sections.

3.2.9.1. Type 9 (a, c)

Description: Packets passing through W(i,j) as a result of up traffic communication

destined to nodes on a diagonal other than node W(i,j) diagonal from nodes with

YX  . This sub-type studies the effect of sub-type 6(a) and sub-type 6(b) on

the switches adjacent to a given diagonal.

Count: To calculate the number of packets passing through a switch under up

traffic, we use the pseudo code in Figure 19.

14
 Type 9 and Type 10 analysis is the same as Type 8.

37

Procedure Count

Inputs: i, j, SS, Xsrc, Xdst

Outputs: Count

Count = 0

// Nodes on diagonal

for i = 1 to n'

 // Nodes affected by nodes on diagonal from i to n'

 for j = 1 to SS

 // Nodes originating the traffic after and including index node

 for index = i to n'

 if (ΔX mod SS)  (0, j)

 Count += (i – j) * Multiplier

 else if (ΔX mod SS > j)

 Count += Multiplier

Figure 19: Procedure for counting the packets passing through a switch for Type

9(a, c)

Where for increasing diagonal

If diagonal is below main diagonal i.e.
xy NodeNoden 1

indexnMultiplier 

Else

indexnMultiplier  '

And for decreasing diagonal

If diagonal is above main diagonal i.e.
xy NodeNode 

indexnMultiplier 

Else

indexnMultiplier  '

Where is the number of nodes in the diagonal originating traffic, ;

 is the X index of the node belonging to both the diagonal originating the

traffic and W(i,j) row; and is the Y index of the node belonging to both the

diagonal originating the traffic and W(i,j) row.

Proof: The proof for this type is similar to the proof of Type 8.

3.2.9.2. Type 9 (b, d)

Description: Packets passing through W(i,j) as a result of down traffic

communication destined to nodes on a diagonal other than node W(i,j) diagonal

from nodes with YX  . This sub-type studies the effect of sub-type 6(b) and

sub-type 6(d) on the switches adjacent to a given diagonal.

Count: To calculate the number of packets passing through a switch under down

traffic, we use the pseudo code in Figure 20.

38

Procedure Count

Inputs: i, j, SS, Xsrc, Xdst

Outputs: Count

Count = 0

// Nodes on diagonal

for i = 1 to n'

 // Nodes affected by nodes on diagonal from 1 to i

 for j = 1 to SS

 // Nodes originating the traffic before and including index node

 for index = 1 to i

 if (ΔX mod SS)  (0, j)

 Count += (n' – i – j + 1) * Multiplier

 else if (ΔX mod SS > j)

 Count += Multiplier

Figure 20: Procedure for counting the packets passing through a switch for Type

9(b, d)

Where for increasing diagonal

If diagonal is above main diagonal i.e.
xy NodeNoden 1

'1 nnindexMultiplier 

Else

1 indexMultiplier

And for decreasing diagonal

If diagonal is below main diagonal i.e.
xy NodeNode 

'1 nnindexMultiplier 

Else

1 indexMultiplier

Where is the number of nodes in the diagonal originating traffic, ;

 is the X index of the node belonging to both the diagonal originating the

traffic and W(i,j) row; and is the Y index of the node belonging to both the

diagonal originating the traffic and W(i,j) row.

Proof: The proof for this type is similar to the proof of Type 8.

3.2.10. Type 10 Packets

Description: Packets passing through W(i,j) as a result of communication destined

to nodes on a diagonal other than node W(i,j) diagonal with from nodes with

YX  .

Similar to what was done in Type 8 and Type 9, for Type 10; we represent the

formulas in form of pseudo code for up traffic and down traffic in the following sub-

sections.

3.2.10.1. Type 10 (a, c)

Description: Packets passing through W(i,j) as a result of up traffic communication

destined to nodes on a diagonal other than node W(i,j) diagonal with from nodes

with YX  . This sub-type studies the effect of sub-type 7(a) and sub-type 7(c)

on the switches adjacent to a given diagonal.

39

Procedure Count

Inputs: i, j, SS, Xsrc, Xdst

Outputs: Count

Count = 0

// Nodes on diagonal

for i = 1 to n'

 // Nodes affected by nodes on diagonal from i to n'

 for j = 1 to SS

 // Nodes originating the traffic after and including index node

 for index = i to n'

 if (ΔX mod SS)  (0, j)

 Count += (i – j) * Multiplier

 else if (ΔX mod SS > j)

 Count += Multiplier

Figure 21: Procedure for counting the packets passing through a switch for Type

10(a, c)

Count: To calculate the number of packets passing through a switch under up

traffic, we use the pseudo code in Figure 21.

Where for increasing diagonal

If diagonal is above main diagonal i.e.
xy NodeNoden 1

indexnMultiplier 

Else

indexnMultiplier  '

And for decreasing diagonal

If diagonal is below main diagonal i.e.
xy NodeNode 

indexnMultiplier 

Else

indexnMultiplier  '

Where is the number of nodes in the diagonal originating traffic, ;

 is the X index of the node belonging to both the diagonal originating the

traffic and W(i,j) row; and is the Y index of the node belonging to both the

diagonal originating the traffic and W(i,j) row.

Proof: The proof for this type is similar to the proof of Type 8.

3.2.10.2. Type 10 (b, d)

Description: Packets passing through W(i,j) as a result of down traffic

communication destined to nodes on a diagonal other than node W(i,j) diagonal

with from nodes with YX  . This sub-type studies the effect of sub-type 7(b)

and sub-type 7(d) on the switches adjacent to a given diagonal.

Count: To calculate the number of packets passing through a switch under down

traffic, we use the pseudo code in Figure 22.

41

Procedure Count

Inputs: i, j, SS, Xsrc, Xdst

Outputs: Count

Count = 0

// Nodes on diagonal

for i = 1 to n'

 // Nodes affected by nodes on diagonal from 1 to i

 for j = 1 to SS

 // Nodes originating the traffic before and including index node

 for index = 1 to i

 if (ΔX mod SS)  (0, j)

 Count += (n' – i – j + 1) * Multiplier

 else if (ΔX mod SS > j)

 Count += Multiplier

Figure 22: Procedure for counting the packets passing through a switch for Type

10(b, d)

Where for increasing diagonal

If diagonal is below main diagonal i.e.
xy NodeNoden 1

'1 nnindexMultiplier 

Else

1 indexMultiplier

And for decreasing diagonal

If diagonal is above main diagonal i.e.
xy NodeNode 

'1 nnindexMultiplier 

Else

1 indexMultiplier

Where is the number of nodes in the diagonal originating traffic, ;

 is the X index of the node belonging to both the diagonal originating the

traffic and W(i,j) row; and is the Y index of the node belonging to both the

diagonal originating the traffic and W(i,j) row.

Proof: The proof for this type is similar to the proof of Type 8.

3.2.11. Type 11 Packets

Description: Packets passing through W(i,j) as a result of communication between

node (i,k) from same row as node W(i,j) and nodes on node (i,m) diagonal where 1
 k, m  n and j  k  m.

We divide the discussion of Type 11 into four separate sub-types to ease the

calculation for each of them. The sub-types are listed in the following sub-sections.

3.2.11.1. Type 11 (a)

Description: Packets passing through switch W(i,j) as a result of same row nodes

communicating with nodes with lower index on increasing diagonal i.e. up traffic.

Count:)1)(1( DiagonalRow indexindex

Where is the number of nodes in the diagonal originating traffic, ;

 is the position of switch W(i,j) row in the destination diagonal,

41

Figure 23: Location of W(i,j) in 2D mesh

 ; and is the position of W(i,j) in the row

originating traffic, .

If diagonal is below main diagonal i.e.
xy NodeNoden 1

DiagonalindexnL 

Else

DiagonalindexnL  '

Where is the X index of the node belonging to both the destination diagonal

and W(i,j) row; and is the Y index of the node belonging to both the

destination diagonal and W(i,j) row.

Proof: We consider increasing diagonal for the proof; however, the same proof

applies to decreasing diagonal. In this type, we follow the same steps as in Type 6.

However, in Type 11, we focus on the effect of the same row nodes

communication with the diagonal nodes.

In this type, as shown in Figure 23, switch X(k,m) belongs to a 2D mesh diagonal

with nodes at position (denoted index in Figure 23). We have

() diagonal nodes before node X(k,m) and ()

diagonal nodes after X(k,m). Also, there are () on the same row

as X(k,m) before node X(k,m). Let switch W(i,j) belongs to one of these (
) nodes at position (denoted in Figure 23) with

() nodes before it on the same row.

For this type, under up traffic, each of the () nodes belonging to

the same row as X(k,m) send packets to the (index - 1) diagonal nodes before node

X(k,m). Since W(i,j) is one of these nodes, then each of the packets sent by the

() before W(i,j) in the same row passes through W(i,j). Since each

node sends only one packet to each of the NoC nodes (check the assumptions), the

42

Figure 24: Type 11 example for an increasing diagonal under both up and down

traffics

Table 16: Up traffic passing through switch ZSolid

Source → Destination Pass W(i,j) or Not

XSolid → A Pass

YSolid → A Pass

overall count for the packets passing through W(i,j) is () *

() packets.

In order to illustrate the Count calculations, in Figure 24, we show the up traffic

from the nodes on the same row as switch ZSolid(= 2, = 3, =

5, = 5) i.e. traffic from (XSolid, YSolid) to A. Table 17 lists all the communication from

(XSolid, YSolid) to A and whether the packets to A will pass switch ZSolid or not.

Table 17 states that two packets pass switch ZSolid under up traffic (Count = 2).

Also, applying the Count equation, the number of packets passing through switch ZSolid

is two (Count = (3 – 1) * (2 – 1) = 2 * 1 = 2) which matches to the value deduced from

Table 17.

3.2.11.2. Type 11 (b)

Description: Packets passing through switch W(i,j) as a result of same row nodes

communicating with nodes with higher index on increasing diagonal i.e. down

traffic.

Count:)')(1(DiagonalRow indexnindex 

Where is the number of nodes in the diagonal originating traffic, ;

 is the position of switch W(i,j) row in the destination diagonal,

43

 ; and is the position of W(i,j) in the row

originating traffic, .

If diagonal is above main diagonal i.e.
xy NodeNoden 1

'1 nnindexL Diagonal 

Else

1 DiagonalindexL

Where is the X index of the node belonging to both the destination diagonal

and W(i,j) row; and is the Y index of the node belonging to both the

destination diagonal and W(i,j) row.

Proof: The proof for this type is similar to the proof of Type 11(a).

3.2.11.3. Type 11 (c)

Description: Packets passing through switch W(i,j) as a result of same row nodes

communicating with nodes with lower index on increasing diagonal i.e. up traffic.

Count:)1)(1( DiagonalRow indexindex
Where is the number of nodes in the diagonal originating traffic, ;

 is the position of switch W(i,j) row in the destination diagonal,

 ; and is the position of W(i,j) in the row

originating traffic, .

If diagonal is above main diagonal i.e.
xy NodeNode 

DiagonalindexnL 

Else

DiagonalindexnL  '

Where is the X index of the node belonging to both the destination diagonal

and W(i,j) row; and is the Y index of the node belonging to both the

destination diagonal and W(i,j) row.

Proof: The proof for this type is similar to the proof of Type 11(a).

3.2.11.4. Type 11 (d)

Description: Packets passing through switch W(i,j) as a result of same row nodes

communicating with nodes with higher index on decreasing diagonal i.e. down

traffic.

Count:)')(1(DiagonalRow indexnindex 

Where is the number of nodes in the diagonal originating traffic, ;

 is the position of switch W(i,j) row in the destination diagonal,

 ; and is the position of W(i,j) in the row

originating traffic, .

If diagonal is below main diagonal i.e.
xy NodeNode 

'1 nnindexL Diagonal 

Else

1 DiagonalindexL

44

Where is the X index of the node belonging to both the destination diagonal

and W(i,j) row; and is the Y index of the node belonging to both the

destination diagonal and W(i,j) row.

Proof: The proof for this type is similar to the proof of Type 11(a).

3.2.12. Type 12 Packets

Description: Packets passing through W(i,j) as a result of communication between

node (k,j) from same column as node W(i,j) and nodes on node (m,j) diagonal

where 1  k, m  n and i  k  m.

We divide the discussion of Type 12 into four separate sub-types to ease the

calculation for each of them. The sub-types are listed in the following sub-sections.

3.2.12.1. Type 12 (a)

Description: Packets passing through switch W(i,j) as a result of same column

nodes communicating with nodes with lower index on increasing diagonal i.e. up

traffic.

Count:)1)(1( DiagonalColumn indexindex
Where is the number of nodes in the diagonal originating traffic, ;

 is the position of switch W(i,j) column in the destination diagonal,

 ; and is the position of W(i,j) in the column

originating traffic, .

If diagonal is above main diagonal i.e.
xy NodeNoden 1

DiagonalindexnL 

Else

DiagonalindexnL  '

Where is the X index of the node belonging to both the destination diagonal

and W(i,j) column; and is the Y index of the node belonging to both the

destination diagonal and W(i,j) column.

Proof: The proof for this type is similar to the proof of Type 11(a).

45

Figure 25: Type 12 example for an increasing diagonal under both up and down

traffics

Table 17: Up traffic passing through switch YSolid

Source → Destination Pass W(i,j) or Not

XSolid → A Pass

In order to illustrate the Count calculations, in Figure 25, we study the up traffic

from the nodes on the same column as switch YSolid(= 2, =

2, = 5, = 5) i.e. traffic from XSolid to A. Table 18 lists all the communication from

XSolid to A and whether the packets to A will pass switch YSolid or not.

Table 18 states that only one packet passes switch YSolid under up traffic (Count =

1). Also, applying the Count equation, the number of packets passing through switch

YSolid is one (Count = (2 – 1) * (2 – 1) = 1 * 1 = 1) which matches to the value deduced

from Table 18.

3.2.12.2. Type 12 (b)

Description: Packets passing through switch W(i,j) as a result of same column

nodes communication with nodes with higher index on increasing diagonal i.e.

down traffic.

Count:)')(1(DiagonalColumn indexnindex 

Where is the number of nodes in the diagonal originating traffic, ;

 is the position of switch W(i,j) column in the destination diagonal,

 ; and is the position of W(i,j) in the column

originating traffic, .

If diagonal is below main diagonal i.e.
xy NodeNoden 1

'1 nnindexL Diagonal 

46

Else

1 DiagonalindexL

Where is the X index of the node belonging to both the destination diagonal

and W(i,j) column; and is the Y index of the node belonging to both the

destination diagonal and W(i,j) column.

Proof: The proof for this type is similar to the proof of Type 11(a).

3.2.12.3. Type 12 (c)

Description: Packets passing through switch W(i,j) as a result of same column

nodes communication with nodes with lower index on decreasing diagonal i.e. up

traffic.

Count:)1)(1( DiagonalColumn indexindex
Where is the number of nodes in the diagonal originating traffic, ;

 is the position of switch W(i,j) column in the destination diagonal,

 ; and is the position of W(i,j) in the column

originating traffic, .

If diagonal is below main diagonal i.e.
xy NodeNode 

DiagonalindexnL 

Else

DiagonalindexnL  '

Where is the X index of the node belonging to both the destination diagonal

and W(i,j) column; and is the Y index of the node belonging to both the

destination diagonal and W(i,j) column.

Proof: The proof for this type is similar to the proof of Type 11(a).

3.2.12.4. Type 12 (d)

Description: Packets passing through switch W(i,j) as result of same column nodes

communication with nodes with higher index in decreasing diagonal i.e. down

traffic.

Count:)')(1(DiagonalColumn indexnindex 

Where is the number of nodes in the diagonal originating traffic, ;

 is the position of switch W(i,j) column in the destination diagonal,

 ; and is the position of W(i,j) in the column

originating traffic, .

If diagonal is above main diagonal i.e.
xy NodeNode 

'1 nnindexL Diagonal 

Else

1 DiagonalindexL

Where is the X index of the node belonging to both the destination diagonal

and W(i,j) column; and is the Y index of the node belonging to both the

destination diagonal and W(i,j) column.

Proof: The proof for this type is similar to the proof of Type 11(a).

47

Table 18: Formulas for different traffic types

Type Formula

1
Ejection

12 n

2
Injection

12 n

3
Row

))(1(2 indexnindex 

4
Column

))(1(2 indexnindex 

5

Up Traffic








 


SS

indexn
index

'
)1(

Down Traffic








 


SS

index
indexn

1
)'(

6

Up Traffic

)
mod)(

1()1(
'











 


n

indexx SS

SSindexx
Qindex

if diagonal below main diagonal

xnQ 

else

xnQ  '

Down Traffic

)
mod)(

1()'(
1











 


index

x SS

SSxindex
Qindexn

if diagonal above main diagonal
'1 nnxQ 

else

1 xQ

7

Up Traffic

)
mod)(

1()1(
'











 


n

indexx SS

SSindexx
Qindex

if diagonal above main diagonal
xnQ 

else
xnQ  '

Down Traffic

)
mod)(

1()'(
1











 


index

x SS

SSxindex
Qindexn

if diagonal below main diagonal
'1 nnxQ 

else
1 xQ

48

8, 9, 10

Procedure Count

Inputs: i, j, SS, Xsrc, Xdst

Outputs: Count

// Nodes on diagonal

for i = 1 to n'

 // Nodes affected by nodes on diagonal from i to n'

 for j = 1 to SS

 // Nodes originating the traffic

 for index = A to B

 if (ΔX mod SS) ϵ (0, j)

 Count += (i – j) * Multiplier

 else if (ΔX > j)

 Count += Multiplier

11

Up Traffic

)1)(1( DiagonalRow indexindex

if diagonal below main diagonal

DiagonalindexnL 

else

DiagonalindexnL  '

Down Traffic

)')(1(DiagonalRow indexnindex 

if diagonal above main diagonal

'1 nnindexL Diagonal 

else

1 DiagonalindexL

12

Up Traffic

)1)(1( DiagonalColumn indexindex

if diagonal above main diagonal

DiagonalindexnL 

else

DiagonalindexnL  '

Down Traffic

)')(1(DiagonalColumn indexnindex 

if diagonal below main diagonal

'1 nnindexL Diagonal 

else

1 DiagonalindexL

3.2.13. Summary of Packets Count Calculations15

In this section, we summarize the number of the packets passing through a switch.

Table 19 shows the number of packets caused by all the types with a step size of SS.

The variables used in Table 19 are described in Table 20.

15

 The listed equations and pseudo code are for the increasing diagonals only, but the same applies for the

decreasing diagonals.

49

Table 19: Common variables used in Table 19

n Number of row/column nodes -

'n Number of diagonal nodes nn  '1

index / Diagonalindex Index in diagonal '/1 nindexindex Diagonal 

Rowindex / Columnindex Index in row/column Lindexindex ColumnRow  /1

Table 20: A and B values for up and down traffic

 Up Traffic Down Traffic

A i 1

B 'n i

Table 21: Multiplier value for Type 8, Type 9 and Type 10

Type Up Traffic Down Traffic

8 1 1

9

if diagonal below main diagonal

indexn
else

indexn'

if diagonal above main diagonal

'1 nnindex 
else

1index

10

if diagonal above main diagonal

indexn
else

indexn'

if diagonal below main diagonal

'1 nnindex 
else

1index

Table 22: Values for Type 9 up traffic communication

A i

B 'n

Multiplier

if diagonal below main diagonal

indexn
else

indexn'

For Type 8, Type 9, and Type 10, we devised a pseudo code to calculate the count

instead of using formulas it is more readable that way. Table 19 shows a generic code

for the number of packets passing through a switch W(i,j) for Type 8, Type 9 and Type

10 based on the values in Table 21 and Table 22. For example, Table 23 shows the

values for Type 9 up traffic.

3.3. Proof of Packet Types Completeness

In this section, we prove that any communication between two nodes falls under

one of the mentioned 12 types.

51

Table 23: First category cases

Case # Condition Description

1 YX 
P moves on the diagonal from S to D. This case causes

the pattern defined in Type 5.

2 0X
P moves on a column from S to D. This case causes

the pattern defined in Type 4.

3 0Y
P moves on a row from S to D. This case causes the

pattern defined in Type 3.

4 YX 
P moves on a row till YX  then follows Case 1.

This case causes the pattern defined in Type 6.

5 YX 
P moves on a column till YX  then follows Case

1. This case causes the pattern defined in Type 7.

Table 24: Second category cases

Case # Condition Description

6 YX 

P moves on the diagonal from S to D. The movement on the

diagonal leads the packet to pass through switches on nearby

diagonals. This case causes the pattern defined in Type 8.

7 YX 

P moves on a row till YX  then follows Case 6. This

case causes two patterns; moving on row causes the pattern

defined in Type 11 and moving on diagonal causes the pattern

defined in Type 9.

8 YX 

P moves on a column till YX  then follows Case 6. This

case causes two patterns; moving on column causes the

pattern defined in Type 12 and moving on diagonal causes the

pattern defined in Type 10.

Lemma In an nn mesh, under MMaxFlex, any packet going from a source node

to a destination node falls under one of the mentioned twelve traffic types.

Proof Here, we differentiate the patterns going through W(i,j) into two main

categories:

1) The patterns due to moving to nodes on same row, column, or diagonal as

W(i,j)

2) The patterns due to moving to nodes on different diagonal than that of

W(i,j) (i.e. the effect on W(i,j) caused by category one)

Concerning the first category, consider the possible values for X w.r.t Y . We

list the cases in Table 24.

Now we consider the second category. Beside the patterns in first category, packets

may pass through a switch as a result of other diagonal communication. This is because

adjacent diagonal affects nodes other than its own nodes as there is no direct link

between diagonal nodes. Thus, moving on diagonal will lead to move right-up or left-

down. The effect differs based on the value of X w.r.t Y as shown in Table 25.

Beside the two categories, we have two special cases not related to MaxFlex work;

Node W(i,j) injecting to all other nodes (this case causes the pattern defined in Type 2),

and Node W(i,j) receiving from all other nodes (this case causes the pattern defined in

Type 1).

51

Figure 26: Number of packet passing through sample border and core switches

over different fixed step size values

Thus, the above cases cover the 12 mentioned types proving the lemma.

3.4. Packets Distribution Analysis Results

In this section, we calculate the number of packets passing through each switch in a

10x10 2D mesh network using the count equations presented in Section 3.2 using

different step sizes. We choose some representative switches based on their location in

the network to represent border switches and core switches. We choose Switch (0, 0),

Switch (0, 3) and Switch (0, 6) as border switches and Switch (3, 3), Switch (3, 6),

Switch (5, 5) as core switches.

Figure 26 shows the number of packets passing through each of the mentioned

switches with different step sizes. From the figure, we notice different trends; for the

border nodes, the number of packets passing through the switch increases as the step

size increases, while for the core switches, the number of packets decreases as the step

size increases. In other words, the concentration in the central part of network bisection

is relaxed.

This is because, as the step size increases, the packet moves in one dimension for

more steps before alternating the dimension. This movement enables the packet to

reach farther switches (i.e. switches away from the diagonals) which allows some

relaxation for the core diagonal switches.

3.5. Experimental Setup

In this section, we present the method used to evaluate MMaxFlex. Also, we

present the model of the used bufferless NoC. Finally, we define the performance

52

metrics used to evaluate the proposed approach. In the next section, we evaluate

MMaxFlex selection function using different step sizes in terms of the used

performance metrics. In addition, we calculate an approximate value for the optimal

step size given a certain dimension.

3.5.1. Experimental Methodology

We evaluate the network performance of bufferless NoCs using the General

purpose Simulator gpNoCsim [39]. The simulator is an open-source, component based

simulation framework for NoC architectures that is developed entirely in Java. In

gpNoCsim, we have either a processing node (a message generation or consumption

points) or a switch connected through bidirectional links. Each switch has a router and a

controller. gpNoCsim uses the wormhole switching technique. Processing nodes clock

is synchronized with the switches.

3.5.2. Interconnection Network Model

We use the 2D mesh topology of varying size to model the network. Each switch

has 5 input ports and 5 output ports, including the injection ports. Each of the switch

latency and link latency is 1 cycle. In our configuration, we assume that each link is

128-bit wide and each data packet consists of 8 flits, each of which is assumed to have

128 bits. All packets are of fixed length. For comparing the effect of increasing the step

size, we use a 10x10 mesh. On the other hand, for calculating the optimal step size

given the 2D mesh dimension, we use a mesh size varying from 5x5 to 12x12.

We use synthetic traces to evaluate MaxFlex. Synthetic traces are used for various

sensitivity analyses, as well as for comparing the different step sizes among each other

and with other baseline selection functions. Each switch is associated with a processor

and the destination address of a packet is determined by the statistical process of the

uniform traffic pattern. Within each simulation there is a warm-up period of 100,000

cycles. The simulation terminates when 1000,000 packets are received.

3.5.3. Evaluation Metrics

Our main performance metrics for system performance evaluation are the average

packet latency and the average flit deflection count. Packet latency is calculated as the

time the packet takes to reach the destination (Last Flit Ejection Time – First Flit

Generation Time) including source queuing time. Flit deflection count is the number of

times the flit was forced to go through a non-productive port i.e. misroute.

53

Figure 27: Average packet latency for

different fixed step size values

Figure 28: Average deflection count for

different fixed step size values

Figure 29: Average packet latency for different fixed step sizes at flit injection rate

= 0.22 flit/cycle/node

3.6. Simulation Results

Here we show the results of increasing the step size under MMaxFlex and the

MaxFlex performance compared with other selection functions. Figure 27 and Figure

28 show that as the step size increases, both the average packet latency and the average

deflection count decreases. These results matches the analysis results in Section 3.4, as

the better traffic distribution showed in the analysis can lead to better link utilization

which can lead to faster delivery for the packets and hence better packet latency and

54

Figure 30: Average packet latency for

fixed step size of 8 compared with

different selection functions

Figure 31: Average deflection count for

fixed step size of 8 compared with

different selection functions

less misrouting due to contention. Figure 29 focuses on the cut-off point of the flit

injection rate of 0.22 flit/cycle/node i.e. the point after which the latency increases

exponentially. The figure shows that for smaller step sizes, the average packet latency

is very high (magnitude of thousands of cycles). While for larger step sizes the average

packet latency is much smaller with the smallest packet latency achieved using step size

of 8. The average packet latency using larger step sizes is almost equal as all these step

size values lead to almost the same packet movements. For example, moving from node

(0, 5) to (5, 10) under step size of 1 leads to moving one step in X then one step in Y till

the destination is reached, while using a step size of 6 will lead to moving 6 steps in X

then 6 steps in Y. Since the number of steps remaining in X is less than 6, the packet

will move as if it uses dimension order routing (DO-XY). The same applies for step

sizes larger than 6.

Now, we compare increasing the step size under MaxFlex with other selection

functions, namely Straight Line selection function and random productive port selection

function. In the Straight Line selection function, the flit favors the X-dimension

movement till there are no steps remaining in X-dimension then moves in Y-dimension.

In the random productive port selection function, the flit randomly chooses from the list

of productive ports available at each step. Figure 30 and Figure 31 show that increasing

the fixed step size under MaxFlex leads to better average packet latency and smaller

deflection count. Specifically, using a fixed step size of 8 enhances the average packet

latency by around 95% and 99% over using Straight Line selection function and

random productive port selection function respectively. Also, the average deflection

count decreases by 38% and 53% compared with Straight Line selection function and

random productive port selection function respectively.

55

Table 25: Step size to mesh dimension percentage

Mesh Size Best Step Size Percentage

5x5 4 80

6x6 4 66.67

7x7 5 71.43

8x8 6 75

9x9 6 66.67

10x10 8 80

11x11 8 72.73

12x12 9 75

3.7. Estimation of the Value of the Step Size

In this section, given an nn mesh, we estimate the value of the step size. In order

to do this, we simulated the MaxFlex under different 2D mesh sizes varying from 5x5

to 12x12 and within each network we used step sizes ranging from 1 to n – 1. For

example, for 7x7 mesh network, we used step sizes ranging from 1 to 6. The results are

shown in the Table 26. Column 1 represents the mesh size, column 2 represents the best

step size achieved, and column 3 represents the percentage of the step size to the

dimension of the mesh.

Table 26 shows that using a step size with a value ranging from 60% to 80% of the

2D mesh dimension leads to better network performance. Based on the fixed step size

analysis and simulation results, we conclude that using a larger value for the step size

leads to better network performance. This is due to the better distribution of traffic

among the network switches.

3.8. Concluding Remarks

In this chapter, we presented the idea of increasing the used step size under

MaxFlex selection function. We started by analyzing the uniform traffic distribution

under MaxFlex. We found that the traffic is divided into 12 different types. We studied

how increasing the used fixed step size value can affect the overall traffic distribution

among the NoC switches and links. Our analysis showed that increasing the step size

helps in relaxing the traffic load on the NoC bisection. To back up our analysis, we

simulated a 10x10 mesh under different step sizes and other selection functions. Our

results showed that increasing the step size can lead to an enhancement of 95% and

38% in both average packet latency and average deflection count respectively.

Additionally, we simulated 2D meshes of different sizes to get estimation for the value

of the step size given only the mesh dimension. We found that using 60-80% of the

mesh dimension leads to better performance in terms of both packet latency and

deflection count.

56

Chapter 4 : Variable Step Size Maximum Flexibility

Selection Function

In Chapter 3, we showed that the value of the step size greatly affect the overall

performance of the bufferless 2D NoC. As a result, we proposed MMaxFlex selection

function. MMaxFlex uses step size values greater than one for all the packets in order

to push the traffic to the NoC borders as a way to increase the links utilization. Also, we

proposed estimation for the appropriate step size. However, the selection of the step

size is done at the compilation time. In other words, the value is selected based on the

user input, and used for all the packets.

In this chapter, we investigate the effect of using a variable step size under

MaxFlex selection function. First, we explain the idea behind using variable step size

values and why it is appealing. Then, we propose different approaches on how to

calculate the value of the variable step size. Finally, we provide the simulation results

and explain how the results are related to the fixed step size results.

The chapter is organized as follows; Section 4.1 provides the motivation behind the

variable step size idea. In Section 4.2, we explain the proposed approaches and their

operation. We present the simulation environment and results in Section 4.3. Finally,

Section 4.4 concludes the chapter.

4.1. Motivation

The use of fixed step size MMaxFlex with step size greater than one was shown to

be effective in redistributing the traffic away from the central part of NoC switches and

move more towards the border switches. This redistribution had a direct effect on

decreasing the flits deflection count and thus decreasing the overall average packet

latency.

Generally speaking, the idea is to utilize the NoC switches and links more in a way

that enhances the traffic distribution even better. As a way to change the traffic

distribution, we assign a different step size for each packet instead of assigning the

same step size value to all the packets. How to calculate the value of a different step

size for each packet differs based on the criteria used. We explain the different

approaches in the next section.

4.2. Proposed Variable Step Size Approaches

In this section, we list and explain the different approaches used to calculate the

variable step size value for bufferless mesh. The approaches basically falls under

two categories; the first one deals with the NoC nodes as a standalone modules, while

the second category divides the NoC into a number of rectangular regions and assign

each node to a specific region. In other words, we distribute the nodes of the NoC to a

group of non-interleaving rectangular regions such that each region contains a group of

nodes (at least one node and up to nodes). Also, we assign indices to each region

57

Figure 32: 4x4 mesh divided into four 2x2 regions

in a similar manner to the 2D NoC switches. In Figure 32, we show an example of 4x4

mesh divided into four regions along with the assigned indices.

In the following sub-sections, we explain and evaluate five approaches to calculate

the variable step size. The first approach falls under the first category where we deal

with the standalone nodes, while the rest of the approaches belong to the second

category dividing the NoC into regions. The first approach calculates the step size

based on the distance between the source and destination nodes of the flit. The second

approach calculates the step size based on the distance between the source and

destination regions of the flit. The third approach uses MMaxFlex with independent

variable step sizes for routing inside the region and for routing between regions (i.e.

in/out region routing). Finally, the fourth approach incorporates the in/out region

routing with the distance between the source and destination nodes to calculate the step

size.

4.2.1. Using the Manhattan distance between NoC nodes (NMDVS)

This approach aims to assign small step size to near nodes and large step size to

nodes far from each other. By this approach, we use the information gained from the

fixed step size analysis to better distribute the traffic by using smaller step size to the

traffic between nearby nodes.

In NMDVS, we use the Manhattan distance between the source and destination

nodes. Specifically, we calculate the variable step size as a percentage of the calculated

Manhattan distance.

Where is the Manhattan distance between source and destination nodes; and

 is a customizable variable, .

58

Using large step size value for the traffic between nearby nodes is not effective.

This can be explained by the following; in case of nearby nodes, the distance between

the source and destination nodes is small, so the difference between the source and

destination X-dimension or Y-dimension is also small (maximum value is equal to the

distance between source and destination incase same row or column). Thus, using large

step size leads to moving similar to using Straight Line selection function which leads

to losing the freedom granted by MaxFlex. Given this insight and the analysis given in

Chapter 3, we use smaller step size for the near nodes and larger step for the far nodes

leading to the diversity we want in the traffic distribution.

4.2.2. Using the Manhattan distance between NoC regions

(RMDVS)

As in NMDVS, this approach aims to assign small step size to near nodes and large

step size to nodes far from each other. In RMDVS, we apply the regions concept. We

divide the NoC into group of regions, and then assign each node to one of the regions.

To calculate the step size, RMDVS approach uses the Manhattan distance between

the source and destination regions. Specifically, it calculates the step size based on the

difference between regions indices i.e. XRegion and YRegion. If the nodes are in the same

region then the difference is zero and the step size is one. Otherwise, if the nodes are in

different regions, then the step size is calculated based on how near or far are the

regions.

 | |

 | |

Where is the index of the source node region; is the

index of the source node region; is the index of the destination node

region; and is the index of the destination node region.

Near regions most probably leads to smaller difference in the XRegion and YRegion

indices which leads to smaller step size. On the contrary, far regions lead to larger

difference and hence larger step size. Also, this approach matches the analysis

presented in Chapter 3.

4.2.3. Using In-Region and Out-Region routing (IORVS)

In this approach, we use the regions concepts in a different way. Similar to the

RMDVS, we divide the NoC into regions and assign nodes to each region. However, in

IORVS, we differentiate between the traffic between nodes belonging to the same

region (in-region routing), and the traffic between nodes from different regions (out-

region routing). In case of in-region routing, we consider each region to be a separate

smaller NoC that can route the traffic between its own nodes using a step size that fits

its characteristics. While in out-region routing, we look at the region as a whole unit

and route the data between the regions using a step size that is tailored to the inter-

region traffic.

59

Based on the value of both in-region and out-region step sizes, the performance of

the MaxFlex varies. Thus, using the freedom granted by IORVS, we study the different

behavior between the near nodes traffic and the far nodes traffic under different in-

region and out-region step sizes. Also, we study the effect of the region size on the

overall performance.

4.2.4. Using the Manhattan distance between NoC nodes for Out-

Region routing (ORMDVS)

In this approach, we mix between using the regions concepts as in IORVS with

using the Manhattan distance between NoC nodes approach as in NMDVS.

Specifically, we use a fixed step size customized for the in-region routing, and use the

Manhattan distance between NoC nodes for calculating the out-region step size.

Where is the Manhattan distance between source and destination regions;

 is a customizable variable, ; and

is the number of row (or column) nodes in a region.

In other words, ORMDVS uses the idea of assigning the step size as a percentage

of the distance between the source and destination nodes mentioned in NMDVS, but in

order to calculate such distance, it uses the Manhattan distance between the regions and

the region’s size instead of using the Manhattan distance between source and

destination nodes. It aims to get the advantage of NMDVS and the flexibility of

IORVS.

4.3. Simulation Results

In this section, we adapt the same experimental setup used in Chapter 3 to examine

the use of the variable step size proposed approaches. First, we evaluate the NMDVS

approach separately to get an estimate for the value of the percentage to use. Then, we

evaluate the RMDVS approach and compare it with another formula that performs the

opposite functions of RMDVS. IORVS is evaluated to study the effect of the region

size, in addition to differentiate between the traffic between near nodes versus the

traffic between far nodes. Finally, we present the ORMDVS approach performance

results.

To evaluate NMDVS, we assigned a different step size for each packet based on

the Manhattan distance between the packet's source and destination. For packet P, let

the Manhattan distance between the source and destination is distance d, the value of

the step size for P is a percentage of d. We examined different percentage value ranging

from 10% to 90%.

61

Figure 33: Average packet latency for

NMDVS using different % values

Figure 34: Average deflection count for

NMDVS using different % values

Figure 33 and Figure 34 shows that as the percentage value increases, the average

packet latency decreases. The best percentage value is about 60% of the distance. Also,

Figure 33 and Figure 34 show that using higher percentage values degrades the

performance as it leads to step sizes that can be similar to using a large fixed step size.

These results matches the results for the fixed step size, as using the percentage value

of 60% leads to larger step size value for the packets with long distance to go and

smaller step size for the packets with short distance to go.

For RMDVS evaluation, we started by presenting another formula, RMDVS` that

performs the exact opposite of RMDVS. In other words, RMDVS assigns small step

size for the near nodes communication and large step size for the far nodes

communication; however, in RMDVS`, by subtracting the differences between the X

and Y dimensions of the NoC regions, we tend to generate small step size for the far

nodes traffic and large step size for the near nodes traffic. Specifically, RMDVS` uses

the following formula to calculate the step size.

 | |

 | |

 | |

Where is the index of the source node region; is the

index of the source node region; is the index of the destination node

region; and is the index of the destination node region.

Also, to study the effect of changing the region size under the RMDVS approach,

we simulated both RMDVS and RMDVS` using 2x2 region size and 5x5 region size

under 10x10 mesh. We expect RMDVS` to not perform well as it does not conform to

the aforementioned fixed step size analysis in Chapter 3.

61

Figure 35: Average packet latency for

RMDVS compared with RMDVS`

Figure 36: Average deflection count for

RMDVS compared with RMDVS`

As shown in Figure 35 and Figure 36, RMDVS performance exceeds the

performance of its opposite formula, RMDVS`, in terms of both average packet latency

and average deflection count respectively. The superior performance is accounted for

how RMDVS step size calculation conforms to the analysis presented in Chapter 3.

RMDVS calculates a large step size for the far node communication, while RMDVS`

calculates a small step size. As a result, given the analysis in Chapter 3, assigning a

large step size decreases the concentration on the NoC central switches and moves part

of the traffic to the borders. Also, RMDVS calculates a small step size in case of near

nodes communication which produces diversity in distributing the NoC traffic leading

to better link utilization, thus better packet latency and deflection count.

Concerning the region size, as shown in both figures, using 2x2 regions resulted in

better performance than using 5x5 regions. This is because using 2x2 region size

resulted in 25 regions, while using 5x5 region size resulted in 4 regions only. Increasing

the number of regions resulted in more fine control in the step size calculation, thus

better distribution for the values of the calculated step size.

In IORVS, we divide the NoC into regions, and differentiate between nodes

communication in the same region and nodes communication between regions in order

to study the difference between the near nodes traffic and the far nodes traffic, and to

study the effect of the region size on the overall performance. To evaluate IORVS, we

simulated 10x10 mesh using 2x2 regions and 5x5 regions. Also, as the performance is

affected by the in-region step size and out-region step size, we simulated all the

possible combinations for the in-region and out-region step sizes, In other words, for

every in-region step size value ranging from one to nine, we used out-region step size

value ranging from one to nine. Thus, for each region size, we simulated 81

experiments to cover all the cases (i.e. 162 for both 2x2 and 5x5 regions).

From Figure 37 to Figure 72, we show the average packet latency and average

deflection count for each of the 162 experiments. From these figures, concerning far

nodes traffic, we noted that under any in-region step size value, using a large step size

for out-region communication leads to better performance under both region sizes.

Specifically, step size of seven or eight leads to the best performance under the used in-

region step size. This conforms to the analysis and step size estimation done in Chapter

62

Figure 37: Average packet latency for

different values under in

 using 2x2 region size

Figure 38: Average packet latency for

different values under in

 using 5x5 region size

Figure 39: Average deflection count for

different values under in

 using 2x2 region size

Figure 40: Average deflection count for

different values under in

 using 5x5 region size

63

Figure 41: Average packet latency for

different values under in

 using 2x2 region size

Figure 42: Average packet latency for

different values under in

 using 5x5 region size

Figure 43: Average deflection count for

different values under in

 using 2x2 region size

Figure 44: Average deflection count for

different values under in

 using 5x5 region size

64

Figure 45: Average packet latency for

different values under in

 using 2x2 region size

Figure 46: Average packet latency for

different values under in

 using 5x5 region size

Figure 47: Average deflection count for

different values under in

 using 2x2 region size

Figure 48: Average deflection count for

different values under in

 using 5x5 region size

65

Figure 49: Average packet latency for

different values under in

 using 2x2 region size

Figure 50: Average packet latency for

different values under in

 using 5x5 region size

Figure 51: Average deflection count for

different values under in

 using 2x2 region size

Figure 52: Average deflection count for

different values under in

 using 5x5 region size

66

Figure 53: Average packet latency for

different values under in

 using 2x2 region size

Figure 54: Average packet latency for

different values under in

 using 5x5 region size

Figure 55: Average deflection count for

different values under in

 using 2x2 region size

Figure 56: Average deflection count for

different values under in

 using 5x5 region size

67

Figure 57: Average packet latency for

different values under in

 using 2x2 region size

Figure 58: Average packet latency for

different values under in

 using 5x5 region size

Figure 59: Average deflection count for

different values under in

 using 2x2 region size

Figure 60: Average deflection count for

different values under in

 using 5x5 region size

68

Figure 61: Average packet latency for

different values under in

 using 2x2 region size

Figure 62: Average packet latency for

different values under in

 using 5x5 region size

Figure 63: Average deflection count for

different values under in

 using 2x2 region size

Figure 64: Average deflection count for

different values under in

 using 5x5 region size

69

Figure 65: Average packet latency for

different values under in

 using 2x2 region size

Figure 66: Average packet latency for

different values under in

 using 5x5 region size

Figure 67: Average deflection count for

different values under in

 using 2x2 region size

Figure 68: Average deflection count for

different values under in

 using 5x5 region size

71

Figure 69: Average packet latency for

different values under in

 using 2x2 region size

Figure 70: Average packet latency for

different values under in

 using 5x5 region size

Figure 71: Average deflection count for

different values under in

 using 2x2 region size

Figure 72: Average deflection count for

different values under in

 using 5x5 region size

71

3. It was estimated that using 60% to 80% of the NoC dimension n as a step size

performs the best under MMaxFlex (and).

As for the near region traffic, from the figures, the performance varies based on the

used in-region step size value, and the used region size value. For example, the best

performance under region size 5x5 is achieved using in-region step size of three. This

in-region step size for the 5x5 regions also conforms to the estimation done in Chapter

3 (). As for 2x2 regions, the best value is achieved using in-region step size

of four. However, the performance of all the in-region step size values is almost similar

as the used region size is small (2x2 regions). As a result, using any in-region step size

value, ranging from one to nine, leads to a behavior similar to DO routing inside 2x2

region. For the same reasons, using 5x5 regions, any value for in-region step size larger

than three leads to similar performance.

As for the effect of the region size, in the figures (from Figure 37 to Figure 72), the

size of the region doesn’t have a clear cut effect on IORVS approach. This is due to the

fact that the calculation of the in-region or out-region step size is not function in the

region size or the number of regions as was in RMDVS. In other words, for any region

size used and following the work done in Chapter 3, we can estimate a value for the in-

region step size, and use large step size for out-region step size to achieve the best

possible performance under the used region size.

Finally, in ORMDVS approach, we combine the calculation of the variable step

size in NMDVS approach, and the flexibility of IORVS approach. Specifically, we use

divide the NoC into regions, use a step size customized for the in-region routing

behavior, and calculate the out-region step size using a formula similar to what was

used in NMDVS.

We simulated 10x10 mesh using 2x2 regions and 5x5 regions. For the percentage

value, we used 60% as it achieved the best performance under NMDVS. For the in-

region step size, we used different values ranging from one to nine to evaluate the

effect of changing the in-region step size. The results for 2x2 regions are shown in

Figure 73 and Figure 74, while the results for 5x5 regions are in Figure 75 and Figure

76.

For 2x2 regions, in Figure 73 and Figure 74, the performance under any in-region

step size is similar with a slight advantage for in-region step size of one. This is due to

using small region size (2x2 regions). As a result, using any in-region step size value,

ranging from one to nine, leads to a behavior similar to DO routing inside 2x2 region.

On the other hand, in Figure 75 and Figure 76, using 5x5 regions leads to worse

performance than using 2x2 regions. The best performance for 5x5 regions is achieved

using in-region step size of four due to the step size estimation presented in Chapter 3.

Under ORMDVS, using 2x2 regions is better than using 5x5 regions as 2x2 regions

generates more regions than using 5x5 regions (25 regions versus 4 regions). More

regions means for flexibility in calculating the out-region step size. For example, using

5x5 regions (4 regions), the distance between regions can be one or two only. Thus, the

distance estimated between the communicating nodes, based on the used formula, has a

two values only (five or ten) leading to out-region step size values of three and six only.

On the other hand, using more regions under 2x2 region size, gives more values for the

distance between the regions, thus leading to more variability in the calculated out-

region step size.

72

Figure 73: Average packet latency using

different values and 60%

under 2x2 region size

Figure 74: Average deflection count

using different values and

60% under 2x2 region size

Figure 75: Average packet latency using

different values and 60%

under 5x5 region size

Figure 76: Average deflection count

using different values and

60% under 5x5 region size

Till now, we presented each approach results separately. To evaluate the different

approaches, we selected the best result achieved under each approach, and compared

these results with using fixed step size of eight under MMaxFlex. For NMDVS, we

used 60% as the percentage. For RMDVS, we used 2x2 region size. As for IORVS, we

selected in-region step size of four and out-region step size of seven under 2x2 region

size, and in-region step size of three and out-region step size of seven under 5x5 region

size. Finally for ORMDVS, we used 60% as the percentage and in-region step size of

one under 2x2 region size.

As shown in Figure 77 and Figure 78, all the proposed approaches enhances the

performance over using a fixed step size of eight under MMaxFlex in terms of both

73

Figure 77: Average packet latency for

different variable step size formulas

Figure 78: Average deflection count for

different variable step size formulas

average packet latency and average deflection count. This is due to using different step

size values for the packets instead of fixing the value for all the packets. This variability

leads to better traffic distribution thus better utilization for the bufferless NoC links.

From the figures, we note that IORVS approach achieves the least enhancement

over the fixed step size. Specifically, using 2x2 regions, the enhancement is 7.03% and

2.23% in terms of average packet latency and average deflection count respectively.

While using 5x5 regions enhances by 8.3% and 2.79% in terms of average packet

latency and average deflection count respectively. This small enhancement is due

minimum variability used in IORVS. IORVS can be seen as an update for using fixed

step size; however, instead of fixing the step size for all the packets, we use two

separate fixed values for in-region and out-region routing.

Also, observing Figure 77 and Figure 78, the performance of NMDVS, RMDVS,

and ORMDVS is almost similar with the best performance achieved by ORMDVS

using 2x2 regions. ORMDVS enhances over fixed step size under MMaxFlex by

33.28% and 8.49% in terms of average packet latency and average deflection count

respectively. The superiority of these approaches can be seen as a result of the higher

variability achieved in calculating the step size. Additionally, ORMDVS superior

enhancement is due to mixing NMDVS and IORVS. Using IORVS granted the

flexibility in separating the in-region and out-region routing. While using NMDVS

granted better distribution and variability for calculating the out-region step size.

4.4. Concluding Remarks

In this chapter, we presented the idea of varying the used step size under

MMaxFlex selection function. We started by presenting different approaches for

calculating the variable step size value. We presented approaches that used the distance

between the source and destination nodes for calculating the step size. Other

approaches divided the NoC into smaller regions and separated the in-region and out-

region routing. To test the performance of the proposed formulas, we simulated a 10x10

74

mesh. Our results showed that using any of the proposed approaches achieves better

results than using fixed step size under MMaxFlex. Specifically, one of the approaches

lead to an enhancement of 33.28% and 8.49% in terms of average packet latency and

average deflection count respectively compared with fixed step size of 8 under

MMaxFlex.

75

Chapter 5 : New Flit Ranking Policies for Deflection-

based Bufferless NoCs

In Chapter 3 and Chapter 4, we enhanced the bufferless NoC performance via

selection functions. We investigated increasing and varying the used step size under

MaxFlex as a way to enhance the links utilization which affects the performance.

In this chapter, we study the role of using different flit ranking policies on the

Bufferless NoC performance. Ranking policies determine the order by which the flits

are served. By changing the order of serving the packets/flits, the performance can

change in a drastic way.

First, we explain the importance of ranking policies and why it worth studying.

Then, we present different policies for ranking the flits. Finally, we experimentally

evaluate the proposed policies.

The chapter is organized as follows; Section 5.1 provides the motivation behind

studying ranking policies. In Section 5.2, we propose new ranking policies. Section 5.3

simulates and evaluates the proposed ranking policies. Finally, Section 5.4 concludes

the chapter.

5.1. Motivation

During the NoC operation, a 2D mesh NoC switch can receive up to five flits; four

from the ports connected to its neighboring switches, in addition to one flit injected

from the node connected to it. Each of these flits needs an output port to reach its

required destination. As a result, a conflict may arise due to different flits requiring the

same output port. In order to solve the contention between the different flits, a flit

ranking policy is used. A flit ranking policy applies a criterion to determine the order of

serving the incoming flits. In other words, it determines which flit chooses an output

port first.

Different ranking policies employ different criteria to order the flits. Subsequently,

the order of serving the flits differs leading to different arrival patterns for the NoC

flits. A good ranking policy results in a pattern that minimizes the average latency

among all the NoC packets.

In buffered NoCs, if a flit fails to get its required output port, it enters the buffer

waiting for its turn to pass. Thus, even in case of a weak ranking policy, the flit can still

wait till its shortest path is free. However, in bufferless NoC, the ranking policies have

greater effect due to the buffers elimination. If a flit fails to get its productive port, it is

deflected through a non-productive port as the links are the only buffering resource.

This unnecessary detours increase the overall packet latency.

In the next section, we propose new ranking polices and an enhancement tailored

for bufferless NoCs and MaxFlex. We evaluate the proposed approaches with two well-

known ranking policies discussed in the following sub-sections.

5.1.1. Oldest First Ranking Policy (OF)

The OF ranking policy chooses the age of the flit as its criteria. The age of the flit

is the number of cycles passed since its generation. OF ensures that there is a total age

76

order among flits and prioritizes older flits. In other words, OF tends to direct the flit

with higher age to its destination as to not increase the average latency.

At a certain cycle t, let A be a flit with age Age(A,t), and priority Priority(A,t). Also,

let B be a flit with age Age(B,t), and priority Priority(B,t). If Age(A,t) Age(B,t) then

Priority(A,t) Priority(B,t).

5.1.2. Most Deflection First Ranking Policy (MDF)

MDF ranking policy chooses the deflection count of the flit as the ranking criteria.

The deflection count of the flit is number of times the flit takes a non-productive port as

its output port. MDF prioritizes the flits with more deflections. In other words, MDF

tends to direct the flit with higher deflection count to its destination as to not increase

the average latency.

Let A be a flit with deflection count Deflection(A,t), and priority Priority(A,t). Also,

let B be a flit with deflection count Deflection(B,t), and priority Priority(B,t). If

Deflection(A,t) Deflection(B,t) then Priority(A,t) Priority(B,t).

5.2. Proposed Flit Ranking Policies

Based on the results from the fixed/variable step size study in Chapter 3, and from

a recent bufferless NoC study that discusses the effect of deflections on the overall

performance [22], we propose ranking policies that tend to decrease the deflection

count of the NoC flits. The proposed policies favor the flit with more deflections as

extra detouring for this flit leads to extra delay thus increasing the overall packet

latency.

In the following sub-sections, we propose updating the Most Deflections First

(MDF) policy to use the deflection count of the flit along with its age, and the distance

between its source and destination. Also, we propose an enhancement that can work

with the any of the policies. It should be noted that even though the proposed ranking

policies in this chapter are intended for bufferless NoCs, these policies can also be

applied to buffered NoCs.

5.2.1. Deflection Age Ratio Ranking Policy (DAR)

DAR ranking policy chooses the deflection/age ratio as its criteria. DAR prioritizes

the flits with higher ratio. OF and MDF policies favor the oldest and most deflected

respectively, however, the flit may be old or deflected many times because the distance

between its source and destination is large. Thus, DAR takes into consideration both the

time the flit has been in the NoC and its deflection count. DAR favors the flits that have

suffered more deflections during its lifetime in the NoC.

Let A be a flit with age Age(A,t), deflection count Deflection(A,t), and priority

Priority(A,t). Also, let B be a flit with age Age(B,t), and delfeciton count Deflection(B,t),

and priority Priority(B,t). If Deflection(A,t)/Age(A,t) Deflection(B,t)/Age(B,t) then

Priority(A,t) Priority(B,t).

77

5.2.2. Deflection Distance Ratio Ranking Policy (DDR)

DDR ranking policy chooses the deflection/distance ratio as its criteria. The

distance is the Manhattan distance between the source and destination of the flit. DDR

prioritizes the flits with higher ratio. Following the same idea as in DAR, DDR favors

the flits that have suffered more deflections during the path from its source and

destination.

Let A be a flit with distance between its source and destination DistanceA,

deflection count Deflection(A,t), and priority Priority(A,t). Also, let B be a flit with

distance between its source and destination DistanceB, delfeciton count Deflection(B,t),

and priority Priority(B,t). If Deflection(A,t)/DistanceA Deflection(B,t)/DistanceB then

Priority(A,t) Priority(B,t).

5.2.3. Last Dimension Ranking Policy (LD)

LD is an enhancement that can work with any of the ranking schemes. It is

designed to work specifically with bufferless NoCs and MaxFlex selection function. In

case of competing flits, LD favors the flit that has hops in only one direction. In case of

a draw, LD uses other ranking policies to break the draw. For example, it two flits are

competing and one of the flits has only moves left in the X direction, while the other

still has moves in both X and Y directions, then LD favors the first flit.

The motivation behind favoring the flit stuck in one direction is that any deflection

for this flit leads to extra unnecessary detour. This detour needs at least two cycles to

correct the path of the flit. Thus, if we choose not to deflect this flit, we enhance the

overall packet latency as we decrease the overall deflection count.

Here, we present the usage of LD along with MDF and DDR ranking policies as

draw breakers.

5.3. Simulation Results

In this section, we adapt the same experimental setup used in Chapter 3 to evaluate

the approaches mentioned in the previous section. First, we present the experimental

results concerning the updated approaches DAR and DDR in contrast to the baseline

approaches OF and MDF. Then, we evaluate the LD enhancement compared with MDF

and DDR.

Figure 79 and Figure 80 compare between the presented ranking policies in terms

of average packet latency and average deflection count respectively. As shown in both

figures, all the deflection based policies have a superior performance over the OF

ranking policy in addition to operating under higher injection rates. Also, in Figure 79,

the proposed policies DAR and DDR exceed MDF performance in terms of packet

latency. That is because MDF only focus on the deflections without considering the

time spent in the NoC or the distance to be covered. DDR has the best performance in

terms of both packet latency and deflection count as it considers the shortest distance

between the source and destination of the flit. The shortest distance between the source

and destination is known and can be calculated upfront. As a result, if a flit suffered

high deflection count while travelling short distance, it is favored over the flit that was

deflected the same number of times but while travelling long distance. Thus, factoring

the distance differentiates between the two flits even though they have the same

78

Figure 79: Average packet latency for

different ranking policies

Figure 80: Average deflection count for

different ranking policies

Figure 81: Average packet latency for

LD enhancement over other ranking

policies

Figure 82: Average deflection count for

LD enhancement over other ranking

policies

deflection count. Also, the deflection count performance shown in Figure 80 matches

the packet latency results.

In order to show how the LD enhancement affects the performance, we simulated

LD with MDF and DDR as draw breakers. We compared LD performance in contrast

with MDF and DDR respectively. As shown in Figure 81 and Figure 82, the LD

enhancement greatly boosts the performance under higher injection rates. Specifically,

using LD along with MDF under injection rate of 0.24 flit/cycle/node enhances the

packet latency and the deflection count over MDF by 52.3% and 50.4% respectively.

While using LD along with DDR enhances the packet latency and the deflection count

over DDR by 35.6% and 46.7% respectively.

79

To explain this superior performance, we refer to Figure 82. As shown in Figure

82, the average deflection count for LD along with either MDF or DDR dramatically

decreases as LD removes any unnecessary detours for the flits. Decreasing the

deflection count for the flits directly affects the overall packet latency.

5.4. Concluding Remarks

In this chapter, we presented new deflection-based flit ranking policies. We first

explained how bufferless NoCs are more affected by flit ranking polices more than

buffered NoCs. Also, we explained the idea behind choosing the deflection count as our

criterion. Then, we updated the MDF ranking policy by incorporating the age and the

distance between the flit’s source and destination along with the deflection count. In

addition to updating MDF ranking policy, we proposed the LD enhancement that can

be used along with other ranking policies to decrease the deflection count and hence

improve the performance. Finally, we provided an experimental study for the proposed

polices and the enhancement on a 10x10 mesh versus other well-known ranking

polices.

81

Chapter 6 : Time-Sensitive Congestion Management

Mechanisms

In the previous chapters, we investigated the use of output port selection functions

and flit ranking policies to enhance the bufferless NoC performance. However, none of

the proposed approaches directly targets the main roadblock facing bufferless NoC,

namely the congestion problem.

In this chapter, we investigate the role of using proper congestion management

mechanisms on bufferless NoC performance. Congestion can quickly develop under

bufferless NoCs due to the lack of buffers. By managing the congestion, the

performance is boosted in a drastic way.

First, we explain the importance of congestion management and why we choose

the prevention approach. Then, we present different congestion prevention

mechanisms. Finally, we simulate and evaluate the proposed approaches.

The chapter is organized as follows; Section 6.1 discusses the importance of

managing the congestion specifically in bufferless NoCs. In Section 6.2, we propose

two different prevention mechanisms. The updated experimental setup and the

experimental results are presented and discussed in Section 6.3. Finally, Section 6.5

concludes the chapter.

6.1. Motivation

Due to lack of buffers, congestion can quickly develop in bufferless NoC

preventing it from competing with the buffered NoCs performance especially under

high injection rates. As mentioned earlier, combining high injection rate with the

deflection behavior of the bufferless NoC leads to increased traffic volume which

results in more contention between the flits. As the contention increases, the deflection

rates increases and the starvation at the source nodes also increases (the source nodes

are not able to inject new flits). This leads to a collapse in the performance of the NoC.

Various approaches exist for managing the NoC congestion. These approaches falls

under one of two categories: detect and control the congestion, or prevent the

congestion from developing. The first category approaches apply heuristics and monitor

the NoC performance to detect the congestion once it arises. If congestion is detected,

these approaches apply a control mechanism to relieve the congested areas. The

problem with the first category approaches is that if the heuristics used to monitor the

performance or the actions taken to relieve the congestion are biased or excessive, the

overall performance of the system is affected.

On the other hand, the prevention approaches uses extra resources to decrease the

probability of developing the congestion. The idea is to use the extra resources to

provide other options for the flits in case of contention under high traffic volume. For

example, a buffered NoC can use extra buffers to host the flits in case of increased

traffic volume. In bufferless NoCs, we don’t have the luxury of using buffers, so we

investigate how to prevent the congestion with the only buffering resource available i.e.

the NoC links.

81

Figure 83: Using 4x4 mesh instead of 3x3 mesh

6.2. Proposed Approaches

In this section, we investigate how to relieve the traffic volume under bufferless

NoC thus preventing the congestion from developing in the first place. Our goal is to

operate latency-sensitive applications on bufferless NoCs under high injection rates

without inducing extra power or chip area usage.

To be able to do that, we provide more links bandwidth to the flits so that they

have more freedom in their movement towards their destinations. We propose two

mechanisms to achieve this freedom. The first approach runs the application mix on

larger NoCs, while the second approach divides the application mix to smaller subsets

to be run sequentially.

6.2.1. Using Larger NoCs (LNoC)

In the LNoC approach, we propose running the application mix on a larger NoC

with more nodes, switches, and links. For example, as in Figure 83, instead of running

the application mix on a 3x3 mesh, we run it on a 4x4 mesh. Specifically, instead of

running a given application mix on an mesh and quickly reach congestion at

injection rate , we run the same application mix on mesh and operate under

injection rate where and .

The idea behind LNoC is to take advantage of the extra links provided as a result

of using the larger NoC thus providing extra space for the flits to move with less

competition with the other flits. Figure 83 shows the extra nodes (switches) and links as

dotted circles and line respectively.

6.2.2. Using Sequential Injection (SI)

In the SI approach, we propose dividing the application mix into smaller subsets

where only a subset of the NoC nodes is allowed to inject it. Then, instead of running

82

Figure 84: Example of two phase sequential injection

and injecting all the applications traffic at the same run, we divide the injection into

sequential runs. In other words, we run the smaller application subsets sequentially on

the whole NoC. Figure 84 shows an example for two phase injection. In the example,

four nodes inject their traffic during the first phase. After receiving phase one injected

traffic, the rest of the nodes (twelve nodes) inject their traffic into the NoC.

By doing that, we basically divide the problem of running the given application

mix to a group of smaller application mixes that we can run in sequence. The smaller

application mix, which results in smaller traffic volume, in combination with the

sequential operation leads to injecting less data into the NoC in each smaller run which

directly affects the deflection count and the packet latency in a positive way.

6.3. Simulation Results

In this section, we adapt the same experimental setup in Chapter 3; however, we

change the termination condition for each run. We simulate a 10x10 mesh; however,

instead of having a warm-up period of 100,000 cycles, and termination after receiving

1000,000 packets, we remove the warm-up period, inject 10,000 packets per node and

terminates when all these packets are received.

We evaluate each of the proposed prevention mechanisms separately. We start by

evaluating the LNoC approach in two ways. First, we compare the performance of

running fifteen nodes in different mesh sizes, specifically, 3x5 mesh, 5x3 mesh, and

4x4 mesh with one extra node (switch). Second, we evaluate the effect of placing the

extra nodes by simulating 10x10 mesh and change the number and the position of the

extra nodes (switches). Concerning the SI approach evaluation, we simulate 10x10

mesh to study the effect of the number of nodes in each phase and their position in the

NoC.

83

Figure 85: Average packet latency for

fifteen nodes in different mesh sizes

Figure 86: Average deflection count for

fifteen nodes in different mesh sizes

To evaluate the LNoC approach, we considered an application that uses fifteen

nodes only and we arrange the nodes in three different mesh sizes: 3x5 mesh, 5x3

mesh, and 4x4 mesh with one extra node. We used MMaxFlex with step size of one to

study the effect of using different arrangements and extra node(s). As shown in Figure

85 and Figure 86, using 4x4 mesh resulted in better performance in both average packet

latency and average deflection count. The enhancement is accounted for the use of

extra node (switch) and the links connected to it which provided extra freedom for the

flits to reach their destinations. Specifically, using an extra node instead of the required

fifteen nodes in 3x5 mesh enhances the average packet latency and the average

deflection count at flit injection rate 0.48 flit/cycle/node by 98.85% and 31.07%

respectively. Also, from both figures, we notice that using 3x5 mesh is better that using

5x3 mesh in both performance metrics. This is due to the default behavior of MaxFlex,

namely, moving on X-dimension first then on Y-dimension. Thus, as the number of

columns in 5x3 mesh is less than the number of columns in 3x5 mesh (three versus

five), the flits have more freedom to move in the X-dimension in case of 3x5 mesh than

in case of 5x3 mesh.

The previous experiment did not study the number of the extra nodes used and

their placement in the NoC, so we simulated 10x10 mesh and varied the number of

extra nodes and changed their location from border nodes to central nodes. We

compared using all the nodes in 10x10 mesh with the following: 90 nodes with 10 extra

nodes placed as border nodes, 90 nodes with 10 extra nodes placed as central (core)

nodes, 80 nodes with 20 extras nodes as central nodes, and 50 nodes with 50 extra

nodes placed in the even columns of the 10x10 mesh. All of the previous experiments

were simulated under MMaxFlex with step size of eight.

As shown in Figure 87 and Figure 88, using any extra nodes enhanced the

performance over using all the 10x10 mesh nodes. This is also a result of the extra

space provided for the flits in case of using extra nodes. For example, using only 90

nodes for injecting traffic instead of the provided 100 nodes leaves 10 switches in

addition to their links to help in forwarding the traffic. The extra links works as extra

roads for the flits to move.

84

Figure 87: Average packet latency for

different number of extra nodes in

different locations in 10x10 mesh

Figure 88: Average deflection count for

different number of extra nodes in

different locations in 10x10 mesh

Also, Figure 87 and Figure 88 presented the effect of the number of extra nodes

and their placement. As the number of extra nodes increases, both the average packet

latency and the average deflection count decreases. This is because using more extra

nodes leads to more space for the flits to reach their destination. Concerning the

placement of the extra nodes, Figure 87 and Figure 88 shows the difference between

using 10 extra nodes placed on the border of the NoC and using 10 extra nodes placed

in the center of the NoC. As in both figures, placing the extra nodes in the center of the

NoC enhanced the performance over placing them on the border in terms of average

packet latency, average deflection count, and the flit injection rate. The enhancement is

due to the fact that the central switches are responsible for more traffic forwarding and

handling than the border switches, thus placing the extra nodes in the center frees the

central switches for forwarding only and leaves the injection for the rest of the nodes.

Concerning the SI approach evaluation, we used two phase sequential injection

with different number of nodes at each phase. Also, we changed the location of the

nodes in each phase to study the effect of the nodes placement. By two phase sequential

injection, we mean that we divide the NoC nodes into two groups that take turn in

injecting their traffic. For evaluation, we compared injecting the traffic from all the

nodes in 10x10 mesh as one phase with the following: two phase with 90 nodes in the

first phase and 10 nodes placed as border nodes in the second phase, two phase with 90

nodes in the first phase and 10 nodes placed as central nodes in the second phase, and

two phase with 80 nodes in the first phase and 20 nodes placed as central nodes in the

second phase. All of the previous experiments were simulated under MMaxFlex with

step size of eight.

As shown in Figure 89 and Figure 90, using two phase SI injection enhances the

performance over using one phase injection in terms of the used performance metrics.

Specifically, in Figure 90, the average deflection count decreases as ratio between the

number of nodes in each phase increases. This can be explained as in LNoC approach,

namely, dividing the nodes evenly between the phases lead to less nodes injecting in

each phase which lead to less competition between the flits, hence less deflections. As

for the packet latency, increasing the ratio between the number of nodes in each phase

85

Figure 89: Average packet latency for

two phase SI using different number of

nodes in different locations in 10x10

mesh

Figure 90: Average deflection count for

two phase SI using different number of

nodes in different locations in 10x10

mesh

resulted in better average latency and achieves higher flit injection rates as shown in

Figure 89.

As for the nodes placement, changing the location of nodes from the border of the

NoC to the center of the NoC decreased the average packet latency and the average

deflection count by 98.36% and 32.2% respectively. This enhancement is accounted to

the same reasons as in LNoC. Specifically, the central switches forward and handle

more traffic than the border switches, thus separating the center nodes injection in

different phase frees the center of the NoC to only forward the traffic of the rest of the

nodes.

6.4. Concluding Remarks

In this chapter, we presented the idea of using proper congestion prevention

mechanisms in bufferless NoCs. Also, we presented two prevention mechanisms,

LNoC and SI, and idea behind each of them. Each of the two approaches provided more

space for the flits to move in the NoC thus less contention between the flits. To test the

performance of the proposed approaches, we simulated a 10x10 mesh. Our results

showed that our proposed mechanisms resulted in better performance in terms of both

average packet latency and average deflection count compared with fixed step size of 8

under MMaxFlex.

86

Chapter 7 : Discussion and Conclusion

In this thesis, we were concerned with pushing the boundaries of using bufferless

NoCs. In other words, how bufferless NoCs can achieve a performance, packet latency

and deflection count, similar to buffered NoCs under higher injection rates but with the

added benefit of less power and area. We first focused on using the selection functions

to achieve our goal. Specifically, we investigated using larger and variable step sizes

under MaxFlex selection function to enhance the traffic distribution and hence the

performance. Our analytical and experimental work showed that using larger step size

values led to better performance figures. Also, using variable step size for each packet

instead of fixing the value for all packets led to better traffic distribution which resulted

in enhanced performance. Then, we shifted to investigate the usage of different ranking

policies under MaxFlex to boost the performance enhancement. We tailored our

proposed policies to focus on decreasing the flits’ deflections as enhancing the

deflection count should result in better packet latency. Finally, we looked into easing

the congestion problem in bufferless NoCs. We wanted to prevent the congestion

instead of detecting and controlling it later. Our prevention mechanisms allowed the

flits to have more link bandwidth while moving to their destinations. We achieved that

by using extra resources and/or organizing the injection of the running latency-sensitive

applications. Our work in this part showed a huge enhancement in both the packet

latency and the deflection count.

7.1. Future Work

We can extend our work in different directions. First, we can investigate the proper

size for the regions based on the overall NoC size as we only investigated the usage of

regions in determining the variable step size value. Also, we can look into other

formulas to determine the variable step size. Additionally, the concept of dividing the

NoC into regions can be extended to other aspects in NoC not only for the variable step

size. For example, regions can be used to enhance the performance on the application

level by assigning different applications to different regions and based on each

application we can customize each region. Second, we can extend our congestion

mechanisms to consider throughput-sensitive applications like GPGPUs in addition to

latency-sensitive applications. Finally, we want to investigate the effect of absorbing

and re-injecting the NoC traffic via “Sink Nodes” as an approach to ease congestion

instead of using source throttling as most of the presented work in the literature

proposed.

Beside the proposed extensions, we can investigate the bufferless NoCs usage in

other hot topics. One of the current hot topics related to NoCs is the usage of die

stacking technologies to incorporate memory stacks inside the chip. Currently, instead

of using 3D stacking, researchers are investigating the usage of 2.5D stacking i.e.

silicon interposer. In 2.5D stacking, instead of adding the memory or other processor

die on the top of the base processor die, the silicon interposer is built to be large enough

to hold the processor die and the memory stacks surrounding the die. The interposer is a

layer rich in communication resources which can be harvested to connect several

components in the chip with extra cost. Recent works proposed the usage of the silicon

interposer instead of 3D stacking. The 2.5D stacking presents several challenges in

87

designing the NoC to support the higher memory bandwidth required. We can look into

using the bufferless NoC in the design to harvest the underlying rich interposer without

the need to add extra buffers. Also, both 3D and 2.5D technologies can be investigated

to see how using the bufferless NoC can enhance the overall design.

Also, recent works investigated the usage of random topologies for NoCs. They

showed that random topologies provide better scalability in terms of network diameter

and provide inherent load balancing. We can look into using the bufferless NoC design

with these random topologies.

88

References

[1] L. Benini and G.De. Micheli, "Networks on Chips: A New SoC Paradigm," Computer, pp.

70-78, 2002.

[2] W. J. Dally and B. Towles, "Route Packets, Not Wires: On-Chip Interconnection Networks,"

in Design Automation Conference, Las Vegas, 2001, pp. 684-689.

[3] J. Duato, S. Yalamanchili, and L. Ni, Interconnection Networks: An Engineering Approach.

San Francisco, California: Morgan Kaufmann, 2002.

[4] W. J. Dally and B. Towles, Principles and Practices of Interconnection Networks. San

Francisco, California: Morgan Kaufmann, 2003.

[5] S.R. Vangal et al., "An 80-Tile Sub-100-W TeraFLOPS Processor in 65-nm CMOS," IEEE

Journal of Solid-State Circuits, pp. 29-41, 2008.

[6] M.B. Taylor et al., "Evaluation of the Raw Microprocessor: An Exposed-Wire-Delay

Architecture for ILP and Streams," in International Symposium on Computer Architecture,

Munich, 2004, pp. 2-13.

[7] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, "A 5-GHz Mesh Interconnect for

a TeraFLOPS Processor," in International Symposium on Microarchitecture, Chicago, 2007,

pp. 51-61.

[8] P. Gratz, C. Kim, R. McDonald, S.W. Keckler, and D. Burger, "Implementation and

Evaluation of On-Chip Network Architectures," in International Conference on Computer

Design, San Jose, 2006, pp. 477-484.

[9] C. Gómez, M. E. Gómez, P. López, and J. Duato, "Reducing Packet Dropping in a Bufferless

NoC," in International European Conference on Parallel and Distributed Computing, Las

Palmas de Gran Canaria, 2008, pp. 899-909.

[10] T. Moscibroda and O. Mutlu, "A Case for Bufferless Routing in On-Chip Networks," in

International Symposium on Computer Architecture, Austin, 2009, pp. 196-207.

[11] M. Hayenga, N.E. Jerger, and M. Lipasti, "SCARAB: A Single Cycle Adaptive Routing and

Bufferless Network," in International Symposium on Microarchitecture, New York, 2009,

pp. 244-254.

[12] G. Michelogiannakis, D. Sanchez, W.J. Dally, and C. Kozyrakis, "Evaluating Bufferless Flow

Control for On-Chip Networks," in ACM/IEEE International Symposium on Networks-on-

Chip, Grenoble, 2010, pp. 9-16.

89

[13] S. Badr and P. Podar, "An Optimal Shortest-Path Routing Policy for Network Computers

with Regular Mesh-Connected Topologies," IEEE Transactions on Computers, pp. 1362-

1371, 1989.

[14] W. J. Dally and H. Aoki, "Deadlock-Free Adaptive Routing in Multicomputer Networks

Using Virtual Channels," IEEE Transactions on Parallel and Distributed Systems, pp. 466-

475, 1993.

[15] C. Gomez, M. E. Gomez, P. Lopez, and J. Duato, "BPS: A Bufferless Switching Technique

for NoCs," in Workshop on Interconnection Network Architectures, 2008, pp. 1-6.

[16] A. Lankes, T. Wild, S. Wallentowitz, and A. Herkersdorf, "Benefits of Selective Packet

Discard in Networks-on-Chip," ACM Transactions on Architecture and Code Optimization,

2012.

[17] J. Lin, X. Lin, and L. Tang, "Making-a-Stop: A New Bufferless Routing Algorithm for On-

Chip Network," Journal of Parallel and Distributed Computing, pp. 515-524, 2012.

[18] C. Fallin, C. Craik, and O. Mutlu, "CHIPPER: A Low-complexity Bufferless Deflection

Router," in International Symposium on High Performance Computer Architecture, San

Antonio, 2011, pp. 144 - 155.

[19] S.A.R. Jafri, Yu-Ju Hong, M. Thottethodi, and T.N. Vijaykumar, "Adaptive Flow Control for

Robust Performance and Energy," in International Symposium on Microarchitecture,

Atlanta, 2010, pp. 433 - 444.

[20] C. Fallin et al., "MinBD: Minimally-Buffered Deflection Routing for Energy-Efficient

Interconnect," in International Symposium on Networks-on-Chip, Lyngby, 2012, pp. 1 - 10.

[21] J., Nayak, B. Jose, K. Kumar, and M. Mutyam, "DeBAR: Deflection Based Adaptive Router

With Minimal Buffering," in Conference on Design, Automation and Test in Europe,

Grenoble, 2013, pp. 1583 - 1588.

[22] Y. Li, K. Mei, Y. Liu, N. Zheng, and Y. Xu, "LDBR: Low-Deflection Bufferless Router for Cost-

Sensitive Network-on-Chip Design," Microprocessors and Microsystems, vol. 38, no. 7, pp.

669-680, October 2014.

[23] T. Weller and B. Hajek, "Comments on "An Optimal Shortest-Path Routing Policy for

Network Computers with Regular Mesh-Connected Topologies"," IEEE Transactions on

Computers, pp. 862-863, 1994.

[24] W. Feng and K. Shin, "Impact of Selection Functions on Routing Algorithm Performance in

Multicomputer Networks," in International Conference on Supercomputing, Vienna, 1997,

pp. 132-139.

[25] M. Koibuchi, A. Jouraku, and H. Amano, "MMLRU Selection Function: A Simple and

91

Efficient Output Selection Function in Adaptive Routing," IEICE Transactions, pp. 109-118,

2005.

[26] F. Gilabert, M. E. Gómez, P. López, and J. Duato, "On the Influence of the Selection

Function on the Performance of Fat-trees," in International European Conference on

Parallel and Distributed Computing, Dresden, 2006, pp. 864-873.

[27] A. Farouk and H.M. El-Boghdadi, "On the Influence of Selection Function on the

Performance of Fat-Trees under Hot-Spot Traffic," in IEEE/ACS International Conference

on Computer Systems and Applications, Sharm El-Sheikh, 2011, pp. 120-127.

[28] A. Farouk and H.M. El-Boghdadi, "A Cost-efficient Congestion Management Methodology

for Fat-trees using Traffic Pattern Detection," The Journal of Supercomputing, vol. 71, no.

4, pp. 1249 - 1276, April 2015.

[29] J. Jose, B. M. Jacob, and H. P. Kamal, "An Energy Efficient Load Balancing Selection

Strategy for Adaptive NoC Routers," in International Workshop on Network on Chip

Architectures, Cambridge, 2014, pp. 31 - 36.

[30] Z. Lu, M. Zhong, and A. Jantsch, "Evaluation of On-Chip Networks using Deflection

Routing," in Great Lakes Symposium on VLSI, Philadelphia, 2006, pp. 296 - 301.

[31] G. Nychis, C. Fallin, T. Moscibroda, and O. Mutlu, "Next Generation On-Chip Networks:

What Kind of Congestion Control Do We Need?," in Workshop on Hot Topics in Networks,

Monterey, 2010.

[32] R. Ausavarungnirun, K. K.-W. Chang, C. Fallin, and O. Mutlu, "Adaptive Cluster Throttling:

Improving High-Load Performance in Bufferless On-Chip Networks," Computer

Architecture Lab (CALCM) Carnegie Mellon University, SAFARI Technical Report 6, 2011.

[33] K. K.-W. Chang, R. Ausavarungnirun, C. Fallin, and O. Mutlu, "HAT: Heterogeneous

Adaptive Throttling for On-Chip Networks," in International Symposium on Computer

Architecture and High Performance Computing, New York, 2012, pp. 9 - 18.

[34] J. Yan, G. Lai, and X. Lin, "A Novel Distributed Congestion Control for Bufferless Network-

on-Chip," The Journal of Supercomputing, vol. 68, no. 2, pp. 849 - 866, May 2014.

[35] Tilera Corporation. Tilera announces the world’s first 111-core processor with the new

tile-gx family. [Online].

http://www.tilera.com/news_&_events/press_release_091026.php

[36] D. Wentzlaff et al., "On-Chip Interconnection Architecture of the Tile Processor," in

International Symposium on Microarchitecture, Chicago, 2007, pp. 15 - 31.

[37] Intel Corporation. Single-Chip Cloud Computer. [Online].

http://techresearch.intel.com/articles/

http://www.tilera.com/news_&_events/press_release_091026.php
http://techresearch.intel.com/articles/

91

[38] M. Taylor, J. Kim, J. Miller, and D. Wentzlaff, "The Raw Microprocessor: A Computational

Fabric for Software Circuits and General-Purpose Programs," in International Symposium

on Microarchitecture, Istanbul, 2002, pp. 25 - 35.

[39] H. Hossain, M. Ahmed, A. Al-Nayeem, T.Z. Islam, and M.M. Akbar, "gpNoCsim - A General

Purpose Simulator for Network-on-Chip," in International Conference on Information and

Communication Technology, Dhaka, 2007, pp. 254-257. [Online].

http://www.buet.ac.bd/cse/research/group/noc/index.htm

http://www.buet.ac.bd/cse/research/group/noc/index.htm

92

Appendix A: 2D Mesh Terminologies

In this appendix, we explain the concept of main diagonal, and how to differentiate

between the increasing and decreasing diagonals in mesh. Also, we explain how

to determine if a certain node is above or below the main diagonal.

Figure 91: Main increasing and decreasing diagonals in 5x5 mesh

We start by defining the main diagonal concept in mesh. The main diagonal

is the longest diagonal in a given mesh. In other words, it is the diagonal with

nodes on it. All other diagonals in mesh contains less than nodes. Figure 91

shows an example of main diagonals in 5x5 mesh.

Also, we differentiate between increasing and decreasing diagonals in mesh.

Figure 91 shows both of the diagonal types. In the decreasing diagonal, both the X and

Y indices increases for each node along the diagonal. In contrast, the X index increases

while the Y index decreases for each node along the increasing diagonal. A typical 2D

mesh node belongs to an increasing diagonal as well as a decreasing diagonal but not

necessarily of same size. For example, node P3 in Figure 91 belongs to the main

decreasing diagonal and to an increasing diagonal with three nodes.

To determine if a node is above or below the main diagonal, we study the slope of

a virtual line on which the node lays. Also, we shall differentiate between the

increasing and decreasing diagonal cases. For example, in Figure 91, to determine if

nodes P1 and P2 are above the main decreasing diagonal, we compare between the

slopes of lines AD and AP1, and AP2.

93

Since , then node P1 is below the main decreasing diagonal

(i.e. line AD). Also, since , then node P2 is above the main

decreasing diagonal.

Also, we can use the node X and Y indices to determine if a node is above or below

the main diagonal. As in the previous method, we differentiate between increasing and

decreasing diagonals. Figure 91 shows the nodes indices in both and
 formats. For the decreasing diagonal, if , then the node is below the main

decreasing diagonal; else the node is above the main decreasing diagonal. For the

increasing diagonal, , then the node is below the main increasing

diagonal; else the node is above the main increasing diagonal. For example, node

P1 has , then node P1 is below the main decreasing diagonal.

Also, node P3 has , then the node is above the

main increasing diagonal.

94

Publications

[1] M. A. Abd ElMohsen and H. M. El-Boghdadi, "Investigating the Viability of

Maximum Flexibility Selection Function in Bufferless 2D Meshes," in

International Workshop on Many-core Embedded Systems, Portland, 2015, pp.

52-55.

 أ

 ممخصال

رقاقة تشكل العمود الفقري -عمى-مع وصول الأنظمة متعددة المعالجات، بدأت الشبكة
رقاقة استيلاكيا العالى -عمى-المعالج الدقيق. و لكن يحد أداء الشبكةللاتصال داخل رقاقة

رقاقة -عمى-لمطاقة و لمساحة الرقاقة. كحل لمحد من استيلاك الطاقة والمساحة، ظيرت الشبكة
رقاقة الغيرُ مُخٓز ِّنة عناصر تخزين تستخدم لتوجيو حزم -عمى-الغيرُ مُخٓز ِّنة. ازالت الشبكة

م في تدفقيا وتتعامل مع التنافس عمى مخارج التوجيو باستخدام إسقاط الحزمة البيانات و/أو التحك
 من الشبكة أو تغيير مسار الحزمة بعيدا عن اقصر مسار.

رقاقة الغيرُ -عمى-في ىذه الأطروحة، نحن نركز عمى تحسين أداء الشبكة
صول وتقميص عدد عن طريق تقميص الوقت اللازم لمو لمتطبيقات ذات الحساسية لموقت مُخٓز ِّنة

 مخارج توجيو حزم الانحرافات. تم تقسيم الأطروحة لتركز عمى ثلات محاور. أولًا، كيفية اختيار

البيانات. ثانياً، كيفية ترتيب حزم البيانات في حالة التنافس عمى مخرج توجيو. أخيراً، كيفية
 البيانات. الازدحام في الشبكة في ظل ارتفاع معدل تدفق حزم تخفيف
لًا، نقدم دراسة لإختيار مخارج توجيو حزم البيانات بقدر عالي من المرونة باستخدام قيم أو

ثابتة و متغيرة لمخطوة المستخدمة. تستخدم ىذه الطريقة ذات المرونة العالية لانيا تعمل عمى
م نقدم دراسة تحميمية لحركة مرور حز زيادة الاختيارات المتاحة لحزم البيانات. في ىذا الجزء،

بقدر عالى حزم البياناترقاقة الغيرُ مُخٓز ِّنة التى تختار مخارج توجيو -عمى-البيانات في الشبكة
من المرونة باستخدام قيم مختمفة لمخطوة المستخدمة. تشير نتائج المحاكاة أنو مع قيم معينة

جيو ٪ مقارنة باختيار مخارج التو 79بنسبة حزم البياناتلمخطوة، يمكن تخفيض وقت وصول
 بشكل مستقيم. الدراسة التحميمية المقدمة توضح تفوق النتائج التجريبية.

التي تركز عمى تخفيض عدد انحرافيا. حزم البياناتثانياً، نقدم طرق مختمفة لترتيب خدمة
بنسبة حزم البياناتو تبين نتائج المحاكاة أن بعض الطرق يمكن أن تقمل من وقت وصول

 اسة اختيار الاقدم.٪ مقارنة بسي85تصل إلى
و أخيراً، نوجو اىتمامنا لمتخفيف من تأثير الازدحام في الشبكة في ظل ارتفاع معدل تدفق
حزم البيانات. نقترح اسموبين لمنع اسباب الازدحام. و تيدف أول طريقة لتشغيل التطبيقات عمى

تدفقة لسمسمة من الأحمال الم حزم البياناتالشبكة باستخدام موارد إضافية. الطريقة الثانية تقسم
بنسبة تصل حزم البياناتالأخف. وتبين نتائج المحاكاة أن الطرق المقترحة تعزز وقت وصول

 .حزم البيانات٪، بالإضافة إلى رفع معدل تدفق 16إلى

 محمد عاصم عبد المحسن ابراىيم :دسـمهن
 1211\00\00 تاريخ الميلاد:

 مصرى الجنسية:
 2010\10\01 تاريخ التسجيل:

 2012\....\.... تاريخ المنح:
 ىندسة الحاسبات القسم:
 ماجستير العموم الدرجة:

 حاتم محمود البغدادى أ. د. المشرفون:
)الممتحن الخارجي(أ. د. محمد زكي عبدالمجيد الممتحنون:

 جامعة الأزهر -استاذ بكلية الهندسة -
 اخمي()الممتحن الد عمرو جلال الدين وصال . د.مأ.
 حاتم محمود البغدادى)المشرف الرئيسي(أ. د.

 عنوان الرسالة:
 مُخٓز ِّنة الغيرُ الرقاقة -عمى-عن تحسين أداء الشبكة

 الكممات الدالة:

، طريقة اختيار مخرج لمتوجيو، طريقة اختيار ذات مرونة قصوى، ترتيب حزم مُخٓز ِّنة غيرُ رقاقة-عمى-شبكة
 حتقانمع الاالتعامل ، بياناتال

 :رسالةممخـص ال
 داخل للاتصال الفقري العمود تشكل رقاقة-عمى-الشبكة بدأت المعالجات، متعددة الأنظمة وصول مع
 كحل. الرقاقة لمساحة و لمطاقة العالى استيلاكيا رقاقة-عمى-الشبكة أداء يحد لكن و. الدقيق المعالج رقاقة
 الغيرُ رقاقة-عمى-الشبكة ازالت. مُخٓز ِّنة الغيرُ رقاقة-عمى-الشبكة ظيرت ،والمساحة الطاقة استيلاك من لمحد

 تغيير أو الشبكة من الحزمة إسقاط باستخدام التوجيو مخارج عمى التنافس مع وتتعامل تخزينال عناصر مُخٓز ِّنة
 رقاقة-ىعم-الشبكة أداء تحسين عمى نركز نحن الأطروحة، ىذه في. مسار اقصر عن بعيدا الحزمة مسار
 .الانحرافات عدد وتقميص لموصول اللازم الوقت تقميص طريق عن مُخٓز ِّنة الغيرُ
 توجيو مخارج تختار التى مُخٓز ِّنة الغيرُ رقاقة-عمى-الشبكة في الحزم مرور لحركة تحميمية دراسة نقدم أولا،
 معينة قيم مع أنو المحاكاة نتائج يرتش. المستخدمة لمخطوة مختمفة قيم باستخدام المرونة من عالى بقدر الحزم

 الدراسة. مستقيم بشكل التوجيو مخارج باختيار مقارنة٪ 20 بنسبة الحزم وصول وقت تخفيض يمكن لمخطوة،
 عمى تركز التي الحزم خدمة لترتيب مختمفة طرق نقدم ثانيا، .التجريبية النتائج تفوق توضح المقدمة التحميمية
 بنسبة الحزم وصول وقت من تقمل أن يمكن الطرق بعض أن المحاكاة نتائج نتبي و. انحرافيا عدد تخفيض

 الشبكة في الازدحام تأثير من لمتخفيف اىتمامنا نوجو أخيرا، و .الاقدم اختيار بسياسة مقارنة٪ 81 إلى تصل
 التطبيقات لتشغيل طريقة أول تيدف و. الازدحام اسباب لمنع اسموبين نقترح. الحزم تدفق معدل ارتفاع ظل في

 وتبين. الأخف الأحمال من لسمسمة المتدفقة الحزم تقسم الثانية الطريقة. إضافية موارد باستخدام الشبكة عمى
 .الحزم تدفق معدل رفع إلى بالإضافة الحزم، وصول وقت تعزز المقترحة الطرق أن المحاكاة نتائج

نة الغير الرقاقة -على-عن تحسين أداء الشبكة خٓز ِّ م

 عداد إ

 محمد عاصم عبد المحسن ابراهيم

 القاهرة جامعة - الهندسة كلية إلى مقدمة رسالة

 العلوم ماجستير درجة على الحصول متطلبات من كجزء

 في

 هندسة الحاسبات

 :يعتمد من لجنة الممتحنين

 المشرف الرئيسى حاتم محمود البغدادى الدكتور:

 قاهرةجامعة ال - بكلية الهندسةاستاذ -

 الممتحن الداخلي عمرو جلال الدين وصالالدكتور:

 قاهرةجامعة ال - بكلية الهندسة مساعد استاذ -

 الممتحن الخارجي محمد زكي عبدالمجيدالاستاذ الدكتور:

 جامعة الأزهر - استاذ بكلية الهندسة -

 القاهــرة جامعــة - هندســةال كليــة

 العربيــة مصـر جمهوريـة - الجيـزة

1026

نة الغير الرقاقة -على-عن تحسين أداء الشبكة خٓز ِّ م

 عداد إ

 محمد عاصم عبد المحسن ابراهيم

 القاهرة جامعة - الهندسة كلية إلى مقدمة رسالة

 العلوم ماجستير درجة على الحصول متطلبات من كجزء

 في

 هندسة الحاسبات

 تحت اشراف

 د. حاتم محمود البغدادى

 استاذ

 قسم هندسة الحاسبات

 كلية الهندسة جامعة القاهرة

 القاهــرة جامعــة - الهندســة كليــة

 العربيــة مصـر جمهوريـة - الجيـزة

1026

نة الغير الرقاقة -على-عن تحسين أداء الشبكة خٓز ِّ م

 عداد إ

 محمد عاصم عبد المحسن ابراهيم

 القاهرة جامعة - الهندسة كلية إلى مقدمة رسالة

 العلوم ماجستير درجة على الحصول متطلبات من كجزء

 في

 هندسة الحاسبات

 القاهــرة جامعــة - الهندســة كليــة

 العربيــة مصـر جمهوريـة - الجيـزة

1026

