3

Cairo University

ON ENHANCING THE PERFORMANCE OF BUFFERLESS
NETWORK-ON-CHIP

By

Mohamed Assem Abd EIMohsen Ibrahim

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Computer Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2016



ON ENHANCING THE PERFORMANCE OF BUFFERLESS
NETWORK-ON-CHIP

By
Mohamed Assem Abd EIMohsen Ibrahim

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Computer Engineering

Under the Supervision of

Dr. Hatem M. El-Boghdadi

Professor
Computer Engineering Department
Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2016



ON ENHANCING THE PERFORMANCE OF BUFFERLESS
NETWORK-ON-CHIP

By
Mohamed Assem Abd EIMohsen Ibrahim

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Computer Engineering

Approved by the
Examining Committee

Dr. Hatem M. El-Boghdadi, Thesis Main Advisor
- Professor at the Faculty of Engineering, Cairo University

Dr. Amr G. Wassal, Internal Examiner
- Associate Professor at the Faculty of Engineering, Cairo University

Prof. Dr. Mohammad Z. Abdel Majeed, External Examiner
- Professor at the Faculty of Engineering, Al-Azhar University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2016



Engineer’s Name: Mohamed Assem Abd EIMohsen
Ibrahim

Date of Birth: 07/07/1988

Nationality: Egyptian

E-mail: mohamedassem@eng.cu.edu.eg

Phone: +2 01007846437

Address: 407N, Pyramids Gardens
Giza, Egypt

Registration Date: 01/10/2010

Awarding Date: ....l....12016

Degree: Master of Science

Department: Computer Engineering

Supervisors: Dr. Hatem Mahmoud EI-Boghdadi

Examiners: Prof. Dr. Mohammad Zaki Abdel-Majeed (External
examiner)

- Professor at the Faculty of Engineering, Al-Azhar University
Dr. Amr Jalal EI-Deen Wassal (Internal examiner)
Dr. Hatem Mahmoud EI-Boghdadi (Thesis main
advisor)

Title of Thesis:
On Enhancing the Performance of Bufferless Network-on-Chip

Key Words:
Bufferless Network-on-Chip; Selection Function; Maximum Flexibility; Ranking
Policies; Congestion Management;

Summary:

With the arrival of chip multiprocessor systems, Network-on-Chip (NoC) has started to
form the backbone of communication within a microprocessor chip. However, unfortunately,
the performance of NoC is bounded by the limited power and area budgets. Bufferless NoC has
emerged as a solution to reduce power and area. Bufferless NoC eliminates the buffers used for
routing and/or flow control and handle contention using packet dropping or packet deflection.
In this thesis, we focus on enhancing the performance (latency and deflection count) of
deflection-based bufferless NoC running latency-sensitive applications.

First, we present an analytical study for the traffic in bufferless NoC under the Maximum
Flexibility (MaxFlex) selection function with different step sizes. We also provide an
experimental study under MaxFlex. Simulation results show that with large values of step size,
the latency could be reduced by 97% over using Straight Line selection function. The
proposed analysis explains the outperforming experimental results.

Then we propose different flit ranking policies that focus on decreasing the deflection count
of the flits. Simulation results show that the proposed ranking policies can reduce the latency by
up to 58% compared to Oldest First policy.

Finally, we consider relaxing the effect of congestion in bufferless NoC under high injection
rate. We propose two approaches for congestion prevention. The first considers running
applications on NoC with extra nodes. The second considers dividing a certain load into a
sequence of lighter loads. Simulation results show that the proposed approaches enhance the
latency by up to 61% in addition to operating at higher injections rates.


mailto:mohamedassem@eng.cu.edu.eg

Acknowledgments

(‘-‘AJMUAAJMANV‘“‘“

Aol O YYasall el o) 5 e oY) W Al Y sliae
“Glory to You (O Lord), we have no knowledge except what you have taught us.
Indeed, it is You who is the knowing, the wise (32)” Al-bagarah

A AN Gl 4l s SR Fadle &4l V) Al
“And my success is not but through Allah. Upon him I have relied and to Him | return
(88)” Hood.

| would like to express my sincere gratitude to my advisor, Dr. Hatem El-Boghdadi, for
his huge support, patience and immense knowledge. His guidance helped me in all the
time of working on this thesis. | could not have imagined having a better advisor and
mentor for my masters study.

Also, | take this opportunity to express gratitude to all of the Computer Engineering
department members for their help and support.

I would like to thank my family for their encouragement, support, and attention without
which | would never have made it to the end.

Last but not the least; | would like to thank my wife, Yousra, for being always there for
me and for her support and kindness. My uttermost gratitude goes to Allah that | met
her in such critical point in my life.



Table of Contents

ACKN OW LED GIMEN T S . ittt ettt e e ettt e et r s st e etesessb i arsreeesesesnnes |
T ABLE OF CON T EN T S ..ottt e e e e e e e e e e e e e eeareenns ]
LIS T OF T ABLES ... ettt e e e ettt e e e e e e e e e e eaneeeeaaeennes V
LIST OF FIGURES. . ... oottt e e e e e e e e e e e e enaeens VI
A B S T R A C T e ettt e ettt e e e e e e e e e e e e e e e e e e X
CHAPTER 1 : INTRODUCTION Looieiitiiiiiie ettt ettt e e s e s eaa e e e s s seas s 1
1.1. BASIC BACKGROUND ....coitiiittiiieieeeeeteee s s e e e s esees bt seeeesseeesstnseeeeeees 2
1.1.1. BUFFEIEO INOCS ...ttt ettt et r e e e st e e e e e e e e e e e e e 2
1.1.2. BUTTEIIESS INOCS ..ottt ettt et e e e e e et e e e e e e e e 3
1.1.3. SeIECTION FUNCLIONS ...eeeeeee ettt ettt et e e e e e see e e e e e e e aaes 3
1.1.4. Maximum Flexibility Selection FUNCtion...........c.ccccoceveviiiievnin e, 3
1.1.5. Flit Ranking POICIES .......c.oiiiiiiicec e 4
1.1.6. Congestion ManagemeNt..........c.coivvveiieieiiie e s 4

1.2. RELATED WORK ..ottt e e e e 5
1.3. SCOPE OF THE THESIS .vvvuiiiiiieieeetitisieeeesseeattsssessssseessssnnsesessseesssnnnnes 6
1.3.1. Increasing and Varying Step Size Under MaxFIeX .......cccocevvviviiicinnnns 7
1.3.2. Evaluating Flit Ranking POIICIES..........ccccooiiiiiiiiecc e 7
1.3.3. Preventing the CoNgeStioN .........ccccceeieie i 8

1.4. CONTRIBUTION OF THE THESIS «.oteeevvtieieeeeeeeeeeeee s s e e e e seeeasiiessneessaeennnns 8
1.5. ORGANIZATION OF THE THESIS . cettttuiet et eeeteeeiiiieseeeesseesssnnnsesessseesssnns 9
CHAPTER 2 : BACKGROUND ..ottt ettt e e e e e e e s eea s 10
2.1. INTERCONNECTION NETWORK ..vvvveiiieeeteeeiitieseeeeeeeestitnnseesesseessnnnnas 10
2.2. NETWORK-ON-CHIP (NOC) ..ottt 11
2.3. BUFFERLESS NETWORK=ON-CHIP .....uuuieeee e 12
2.4, SELECTION FUNCTIONS ....otiiiiiiiiiieiieeeee ettt et eeeeeeee e e eeeeeeeeeeeeeeeeeeeeeenens 13
2.5. FLITRANKING POLICIES ..ot 14
2.6. CONGESTION IMANAGEMENT ©..ettteeettiisteeeteteestessseesseeeesssnnssseessessssnns 15
CHAPTER 3 : MODIFIED MAXIMUM FLEXIBILITY SELECTION
[ 1\ (O I 1O ]\ F ORI 16
3.1. PROPOSED APPROACH ......ceeettee ettt e e e e e e e eeeees s e e e e e neeeeenaeeeeeees 16
3.2. ANALYSIS OF MMAXFLEX SELECTION FUNCTION ....vvvviveeeeeeeeein. 17
3.2.1. TYPE L PACKELS ...t 19
3.2.2. TYPE 2 PACKELS ... 20
3.2.3. TYPE B PACKELS ...t 20
3.2.4. TYPE 4 PACKELS ... 21
3.2.5. TYPE 5 PACKELS ..o 21
3.2.6. TYPE 6 PACKELS ... 25
3.2.6.1. TYPE B (Q) c.vvevererereeiiieie ettt 25



3.26.2. LR () D 27

3.2.6.3. TYPE 6 (C) cvereiiieriite ettt ettt re s 29
3.2.6.4. YL T () P 29
3.2.7. TYPE 7 PACKELS ..ot 29
3.2.7.1. TYPE 7 (Q) cveveeerereete ettt sttt re s 30
3.2.7.2. LR (<) TP 30
3.2.7.3. Y LI A () RSP SROS PR 31
3.2.7.4. YL () P 31
3.2.8. TYPE 8 PACKELS ... 31
3.2.8.1. TYPE 8 (Q) c.veveiieiereeie sttt ettt 35
3.2.8.2. BRI (<) OO 36
3.2.9. TYPE 9 PACKELS ... 36
3.29.1. TYPE 9 (B) €) ceereeniereeieeie sttt ettt ettt 36
3.29.2. TYPE O (B, ) ovvovireereeeeeeeeees st 37
3.2.10. TYPE 10 PACKELS ... 38
3.2.10.1. TYPE 10 (B) C) vvereeeieieiereeiei sttt 38
3.2.10.2. TYPE 10 (0, A) oo et 39
3.2.11. TYPE L1 PACKELS ....vecvviiiiiecie sttt 40
3.2.11.1. TYPE L1 () cvvrveoeerreereseeeieseesseee st 40
3.2.11.2. BT T () TP OU 42
3.2.11.3. TYPE LL () vttt 43
3.2.11.4. TYPE L1 (A) oot 43
3.2.12. TYPE 12 PACKELS ....vecveiiicieeie sttt sttt 44
3.2.12.1. TYPE 12 () cvorvereerreeieseeesesesseee st nneneen 44
3.2.12.2. TYPE 12 (10) et 45
3.2.12.3. TYPE L2 () cveneireriieeiieieie ettt 46
3.2.12.4. TYPE 12 (A) ettt e 46
3.2.13. Summary of Packets Count Calculations............ccccoevevveviinieveseecne e 48
3.3. PROOF OF PACKET TYPES COMPLETENESS....uvuviiieeiiiiirreierereeesssnnnenes 49
3.4, PACKETS DISTRIBUTION ANALYSIS RESULTS .oevvveeiiiiiiiieieeee e, 51
3.5. EXPERIMENTAL SETUP 11vviiiiiii ittt sesitbreee e s sisbaree e s e e e sanens 51
3.5.1. Experimental Methodology.........c.cccecviiiiiciiiccce e 52
3.5.2. Interconnection Network Model ...........cocvviviiiiiiiccec e 52
3.5.3. EVAlUALION IMELTICS ..c.vviciiiieeee ettt 52
3.6. SIMULATION RESULTS ..ottt sinbbraee s 53
3.7. ESTIMATION OF THE VALUE OF THE STEP SIZE .....coovvviriiiieee e, 55
3.8. CONCLUDING REMARKS .1ttviiiiieiiiiiiiiiieieie e s ssiiibeees s s e s s sssssbssessseesssnnn 55
CHAPTER 4 : VARIABLE STEP SIZE MAXIMUM FLEXIBILITY
SELECTION FUNCTION ...ttt e s e e sbabaren s e e 56
4.1. Y [0 A7 1[0 ] TR 56
4.2, PROPOSED VARIABLE STEP SIZE APPROACHES ........oocvvvveeere e e 56
4.2.1. Using the Manhattan distance between NoC nodes (NMDVS) ............ 57
4.2.2. Using the Manhattan distance between NoC regions (RMDVS).......... 58
423. Using In-Region and Out-Region routing (IORVS) .........cccocvviiirnnnne. 58
4.24. Using the Manhattan distance between NoC nodes for Out-Region
FOULING (ORIMDYVS) ...ttt ettt sttt st e et e eeste e seeeneenaeneeas 59
4.3. SIMULATION RESULTS ..ottt ettt ettt sabbbaaee s 59
4.4, CONCLUDING REMARKS .11ttiiiiieiiiiiiiiiiei e ssibabeees s s e s s sssibsbasessseesssnan 73



CHAPTER 5 : NEW FLIT RANKING POLICIES FOR DEFLECTION-BASED

BUFFERLESS NOGCS ... oot 75
5.1. IMOTIVATION ..ttt ettt sttt nbb e e s nbb e e e be e enes 75
5.1.1. Oldest First Ranking POliCy (OF).......cccuiiiiiiiiiieieceseee e 75
5.1.2. Most Deflection First Ranking Policy (MDF) ........ccccooiiviviiviiieieinns 76

5.2. PROPOSED FLIT RANKING POLICIES......ccviiiiiiiieiiiiiie e 76
5.2.1. Deflection Age Ratio Ranking Policy (DAR)......ccccceoviviiiiniiciene 76
5.2.2. Deflection Distance Ratio Ranking Policy (DDR).........cccccocvvninennne. 77
5.2.3. Last Dimension Ranking Policy (LD)........ccccooveveviiiiieieieeie e 77

5.3. SIMULATION RESULTS ..vvieiiiieiiieesieeesiieeesiiee e siiee e siteessnne e ssneeanae e 77
5.4. CONCLUDING REMARKS .....vviiiiiiiiiiiiesitieesitie e ssiee e eiee e saae e siee e evee e 79
CHAPTER 6 : TIME-SENSITIVE CONGESTION MANAGEMENT
MECHANISIMS L. aaes 80
6.1. IMOTIVATION ..ttt ettt s ittt ettt e e nbb e e nbne e sn e enes 80
6.2. PROPOSED APPROACHES ....ceiiutiiiiiiieesiiiessiseessiseessssesssssessnseessseessssenens 81
6.2.1. Using Larger NOCS (LNOC) .......ccco i 81
6.2.2. Using Sequential INJeCtion (SI) ......cccoeviiiiiiiiiiie e 81

6.3. SIMULATION RESULTS ..vvtiiiiieiiieesieeesiiee e siee e ste e site e s snne e sneeesnnae e e 82
6.4. CONCLUDING REMARKS .....oviiiiiieiiiiiesitieesitte e eiee e niee e stae e saee e anee e 85
CHAPTER 7 : DISCUSSION AND CONCLUSION ... 86
7.1 FUTURE WORK ...ttt e e e ansna e 86
REFERENGCES ... .ottt nes 88
APPENDIX A: 2D MESH TERMINOLOGIES..........ccco i 92
PUBLICATIONS . ...ttt nnae et e e e e anes 94



List of Tables

Table 1: Up traffic passing through SWitCh C...........cccooiiiiiiiiiic e 23
Table 2: Type 5 Count calculation for an increasing diagonal switches under up traffic
USING AITFErENt SS VAIUES ... 24
Table 3: Down traffic passing through swWitCh C...........cccooviiiiieiii i, 24
Table 4: Type 5 Count calculation for an increasing diagonal switches under down
traffic using different SS VAIUES...........cove i 24
Table 5: Up traffic passing through SWItCh Cgplig «...veeeerreerierieniieniniesienieeeseesiesee e 27
Table 6: Type 6(a) Count calculation for the solid diagonal switches under up traffic
USING AITFErENt SS VAIUES ... 27
Table 7: Type 6(a) Count calculation for the dotted diagonal switches under up traffic
USING AITFErENt SS VAIUES ......ooviiiii s 27
Table 8: Down traffic communication passing through switch Dpgtted «.eveeveereerveeriennenn 28
Table 9: Type 6(b) Count calculation for the dotted diagonal switches under down
traffic using different SS VAIUES...........coeiiiii e 28
Table 10: Type 6(b) Count calculation for the solid diagonal switches under down
traffic using different SS VAIUES...........coeiiiii i 28
Table 11: Down traffic passing through swWitCh A ..o 33
Table 12: Summary for the data collected in Table 11 .........ccccoveiiiieiicce e, 33
Table 13: Down traffic passing through switch B..........c.ccooeiiiiiinie 33
Table 14: Down traffic passing through switch C............cccooviiiiiiie i, 34
Table 15: Down traffic passing through switch D..........c.cccoviiiiiniiieec 34
Table 16: Up traffic passing through SWItCh Zsojig........eeveveeieiieiiiieiicce e 42
Table 17: Up traffic passing through SWItCh Y sojige...eeeeeeerrererrieerieniniieieeieseesie e 45
Table 18: Formulas for different traffic types ... 47
Table 19: Common variables used in Table 19.........cccooieiieiiiieie e 49
Table 20: A and B values for up and down traffic ...........cccooeviiiiiicii e, 49
Table 21: Multiplier value for Type 8, Type 9 and Type 10......cccceveviriiiiininiieien 49
Table 22: Values for Type 9 up traffic communication ............c.cccoveiieviiiciiece e, 49
Table 23: First CAtEgOrY CASES ......ccueiiriirierieeieiesie sttt sttt sttt 50
Table 24: SECON CALEYOTY CASES .....ccvviveireeieerreeteesreeieseesteeresraesteeeesraesreeresraesreeneesrens 50
Table 25: Step size to mesh dimension Percentage ..........ccoovvveerereneneseseseeeeeeeee 55



List of Figures

Figure 1: Generic SWItCh iN @ 2D MESH ......cooiiiiiiiiii e 2
Figure 2: Example of interconnection NEtWOrK ...........cccoveieeiiiie i 10
Figure 3: Generic SWItch in @ 2D MESH ..o 11
Figure 4: The operation of MaxFlex selection function using step size of one ............. 13
Figure 5: The operation of MaxFlex selection function using step size of one ............. 17
Figure 6: Increasing and decreasing diagonals in a 2D mesh ........c.cccccvevveveiiicveecnee, 18
Figure 7: Up and down traffic in 2D MES..........cccoiiiiiiiiiccee e 18
Figure 8: Location of W(i,j) in 2D MeSh rOW .........cccveviiiiieeie e 20
Figure 9: Type 3 example for a row in 5x5 and 6X6 MEeShES ............ccoceviririniiieeniennn, 21
Figure 10: Type 3 Count calculation for a row switch in a 5x5 mesh..............cccccoeee.e. 21
Figure 11: Location of W(i,j) in 2D mesh diagonal............ccccoovieieniienininiiiceee, 22
Figure 12: Type 5 example for an increasing diagonal ..............cccccevvivieiiecn v, 23
Figure 13: Type 6 example for an increasing diagonal under both up and down traffics
........................................................................................................................................ 25
Figure 14: Location of W(i,j) in 2D mesh diagonal.............cccooeiiiiniieninininceee, 26
Figure 15: Type 7 example for an increasing diagonal under both up and down traffics
........................................................................................................................................ 30
Figure 16: Type 8 example for an increasing diagonal in a 12x12 mesh....................... 32

Figure 17: Procedure for counting the packets passing through a switch for Type 8(a) 35
Figure 18: Procedure for counting the packets passing through a switch for Type 8(b) 36
Figure 19: Procedure for counting the packets passing through a switch for Type 9(a, ¢)

........................................................................................................................................ 37
Figure 20: Procedure for counting the packets passing through a switch for Type 9(b, d)
........................................................................................................................................ 38
Figure 21: Procedure for counting the packets passing through a switch for Type 10(a,
(0] I USSR TOSSURRSORN 39
Figure 22: Procedure for counting the packets passing through a switch for Type 10(b,
0 ) OSSPSR 40
Figure 23: Location of W(i,J) iN 2D MESN .....cc.oiiiiiiiiiiieeee e, 41
Figure 24: Type 11 example for an increasing diagonal under both up and down traffics
........................................................................................................................................ 42
Figure 25: Type 12 example for an increasing diagonal under both up and down traffics
........................................................................................................................................ 45
Figure 26: Number of packet passing through sample border and core switches over
different fixed SteP SIZ& VAIUBS ........ccvoiiiiiiiiicee e 51
Figure 27: Average packet latency for different fixed step size values ......................... 53
Figure 28: Average deflection count for different fixed step size values....................... 53
Figure 29: Average packet latency for different fixed step sizes at flit injection rate =
0.22 THE/CYCIEINOUE ... 53
Figure 30: Average packet latency for fixed step size of 8 compared with different
SEIECTION TUNCLIONS .....ovviiiecie ettt e e reeneennees 54
Figure 31: Average deflection count for fixed step size of 8 compared with different
SEIECTION TUNCLIONS .....cuviieie ettt e e e beeneennees 54
Figure 32: 4x4 mesh divided into four 2X2 regions .........cccceevveviveeiiiesieeesee e 57
Figure 33: Average packet latency for NMDVS using different % values.................... 60
Figure 34: Average deflection count for NMDVS using different % values................. 60

Vi



Figure 35: Average packet latency for RMDVS compared with RMDVS ................... 61
Figure 36: Average deflection count for RMDVS compared with RMDVS................ 61
Figure 37: Average packet latency for different SSOutRegion values under in
SSInRegion = 1 USING 2X2 FEJION SIZE......ccveireiiierieitesie e 62
Figure 38: Average packet latency for different SSOutRegion values under in
SSInRegion = 1 USING 5X5 rEQION SIZE....c.eciiiiiiiiiie e 62
Figure 39: Average deflection count for different SSOutRegion values under in
SSInRegion = 1 USING 2X2 FEJION SIZE....c.eeiiiierierierie it 62
Figure 40: Average deflection count for different SSOutRegion values under in
SSInRegion = 1 USING 5X5 rEQION SIZE......ccoveiviiiiiieiiiiesie e 62
Figure 41: Average packet latency for different SSOutRegion values under in
SSInRegion = 2 USING 2X2 FEJION SIZE.....c.ccviireiiiterieitesieeieeie e 63
Figure 42: Average packet latency for different SSOutRegion values under in
SSInRegion = 2 USING 5X5 rEQION SIZE....c.cciiiieiiiieiie e 63
Figure 43: Average deflection count for different SSOutRegion values under in
SSInRegion = 2 USING 2X2 FEJION SIZE....c.eeieiierieiieiieiieseseeee et 63
Figure 44: Average deflection count for different SSOutRegion values under in
SSInRegion = 2 USING 5X5 rEQION SIZE......ccoiiiiiiiiieiieiie s 63
Figure 45: Average packet latency for different SSOutRegion values under in
SSInRegion = 3 USING 2X2 FEJION SIZE....c.eciiiieririeriesiesie st 64
Figure 46: Average packet latency for different SSOutRegion values under in
SSInRegion = 3 USING 5X5 rEJION SIZE......ccoviiviiiiiirieiiesieee e 64
Figure 47: Average deflection count for different SSOutRegion values under in
SSInRegion = 3 USING 2X2 FEJION SIZE....ceeieiierieiieiie ittt 64
Figure 48: Average deflection count for different SSOutRegion values under in
SSInRegion = 3 USING 5X5 rEQION SIZE....c.ecieiiieiieiie e 64
Figure 49: Average packet latency for different SSOutRegion values under in
SSInRegion = 4 USING 2X2 FEJION SIZE....c.ceiiieiiiieieesie sttt 65
Figure 50: Average packet latency for different SSOutRegion values under in
SSInRegion = 4 USING 5X5 rEQION SIZE......ccoiiiiiiiiii e 65
Figure 51: Average deflection count for different SSOutRegion values under in
SSInRegion = 4 USING 2X2 FEJION SIZE....cveieieieiieiie st sttt 65
Figure 52: Average deflection count for different SSOutRegion values under in
SSInRegion = 4 USING 5X5 rEQION SIZE....c.ocieieiiiiieiie e 65
Figure 53: Average packet latency for different SSOutRegion values under in
SSInRegion = 5 USING 2X2 FEJION SIZE....c.eeiviiiiiiiierieiie st 66
Figure 54: Average packet latency for different SSOutRegion values under in
SSInRegion = 5 USING 5X5 rEQION SIZE......ccoiiiiiiiiiiiiesie e 66
Figure 55: Average deflection count for different SSOutRegion values under in
SSInRegion = 5 USING 2X2 IEQION SIZE.....ccuiiueiieeiieiie ettt neeas 66
Figure 56: Average deflection count for different SSOutRegion values under in
SSInRegion = 5 USING 5X5 rEQION SIZE.....cciiviiiieiiiie e 66
Figure 57: Average packet latency for different SSOutRegion values under in
SSInRegion = 6 USING 2X2 FEJION SIZE....c.ccieiieiiirieiie it 67
Figure 58: Average packet latency for different SSOutRegion values under in
SSInRegion = 6 USING 5X5 rEJION SIZE......cciiiiiiiiiieiie et 67
Figure 59: Average deflection count for different SSOutRegion values under in
SSInRegion = 6 USING 2X2 IEQION SIZE.....ccuiiviiieeiiiiie ettt sttt neeas 67

Vii



Figure 60: Average deflection count for different SSOutRegion values under in

SSInRegion = 6 USING 5X5 rEJION SIZE......ccoveiiiiiiiiiiiiiiesi e 67
Figure 61: Average packet latency for different SSOutRegion values under in
SSInRegion = 7 USING 2X2 FEJION SIZE....c.eeiviiierierierie it st 68
Figure 62: Average packet latency for different SSOutRegion values under in
SSInRegion = 7 USING 5X5 rEQION SIZE....c.cciiiiiiiiiiiiiiiiesieseee e 68
Figure 63: Average deflection count for different SSOutRegion values under in
SSInRegion = 7 USING 2X2 FEJION SIZE......ccviireiiiteriesienieeie et 68
Figure 64: Average deflection count for different SSOutRegion values under in
SSInRegion = 7 USING 5X5 rEJION SIZE......ccoviiiiiiiiiiiiiiieii e 68
Figure 65: Average packet latency for different SSOutRegion values under in
SSInRegion = 8 USING 2X2 FEJION SIZE....c.eeiiiieiierieiie it s 69
Figure 66: Average packet latency for different SSOutRegion values under in
SSInRegion = 8 USING 5X5 rEQION SIZE......ociieiieiiiiiiie e 69
Figure 67: Average deflection count for different SSOutRegion values under in
SSInRegion = 8 USING 2X2 rEJION SIZE......ccveiieriiierieiiesie ettt 69
Figure 68: Average deflection count for different SSOutRegion values under in
SSInRegion = 8 USING 5X5 rEJION SIZE.......couiiiiiiiiiiieie e 69
Figure 69: Average packet latency for different SSOutRegion values under in
SSInRegion = 9 USING 2X2 FEJION SIZE......eeiveiieiiiierieitesie ettt 70
Figure 70: Average packet latency for different SSOutRegion values under in
SSInRegion = 9 USING 5X5 rEQION SIZE....c.ccviiiiiiiiieiie e 70
Figure 71: Average deflection count for different SSOutRegion values under in
SSInRegion = 9 USING 2X2 FEJION SIZE....c.eeieiierieiieiiesiesieeieeeeee et 70
Figure 72: Average deflection count for different SSOutRegion values under in
SSInRegion = 9 USING 5X5 rEQION SIZE......ccoviiiiiiieiiiiiese e 70
Figure 73: Average packet latency using different SSInRegion values and 60% under
W A -To 0] (Y USSR RSSRSURRSORN 72
Figure 74: Average deflection count using different SSInRegion values and 60% under
2X2 TEOION SIZE.. ettt bbbt b bbbt b ettt b et 72
Figure 75: Average packet latency using different SSInRegion values and 60% under
SX5 TEGION SIZE.. .ttt bbbttt bt 72
Figure 76: Average deflection count using different SSInRegion values and 60% under
SX5 TEOION SIZE.. ittt b bbbttt bbb 72
Figure 77: Average packet latency for different variable step size formulas................. 73
Figure 78: Average deflection count for different variable step size formulas.............. 73
Figure 79: Average packet latency for different ranking policies.........c.cccccccvvvvevvenenne. 78
Figure 80: Average deflection count for different ranking policies............cc.ccocvvvvenennne. 78

Figure 81: Average packet latency for LD enhancement over other ranking policies...78
Figure 82: Average deflection count for LD enhancement over other ranking policies 78

Figure 83: Using 4x4 mesh instead of 3X3 MeSh ..o 81
Figure 84: Example of two phase sequential injection...........cccoovveiiieninininiceeen, 82
Figure 85: Average packet latency for fifteen nodes in different mesh sizes ................ 83
Figure 86: Average deflection count for fifteen nodes in different mesh sizes.............. 83
Figure 87: Average packet latency for different number of extra nodes in different
10CatioNS 1N LOXL10 MESK ...eviviecieeie et re et sre e nnes 84
Figure 88: Average deflection count for different number of extra nodes in different
10CatioNS IN LOXL10 MESH ...evivieiieeie ettt nreeneennes 84

viii



Figure 89: Average packet latency for two phase Sl using different number of nodes in

different locations in 1OX10 MESH ......ccoiiiiiiiiiiee e 85
Figure 90: Average deflection count for two phase Sl using different number of nodes
in different locations in 10X10 MESN .......ccooiiiiiiiiie i 85
Figure 91: Main increasing and decreasing diagonals in 5x5 mesh.........c.ccccooiieennee. 92



Abstract

Network-on-Chip (NoC) is commonly used to connect different computing
components. With the arrival of chip multiprocessor systems, NoC has started to form
the backbone of communication between cores and memory within a microprocessor
chip. Although NoC has started to form the backbone of communication between cores,
the performance of such interconnection network is bounded by the limited power and
area budgets. Bufferless NoC has emerged as a solution to reduce power and area.
Bufferless NoC eliminates the buffers used for routing or flow control and handle
contention using packet dropping or packet deflection.

We focus on enhancing the performance (in particular, packet latency and
deflection count) of deflection-based bufferless NoC running latency-sensitive
applications. We divide the work to focus on three aspects of NoC. First, we focus on
selecting an output port for the outgoing packet. After that, we shift our focus to
ranking the flits in order to select which one to serve first. Finally, we investigate
relaxing the effect of congestion under high injection rate.

In the first part, we study the effect of Maximum Flexibility selection function
(MaxFlex) on 2D bufferless meshes when a fixed or a variable step size is used. The
selection function selects an output channel from a set of channels supplied by the
routing function. MaxFlex is a well-known selection function that tries to maximize the
number of routing choices as a packet approaches its destination. We investigate the
distribution of packets through the NoC via increasing and/or varying the used step size
as improving the distribution leads to better utilization and thus better performance.
Simulation results show that using a larger step size can enhance the performance by up
to 95% compared to using Straight Line selection function. Also, the results show that
using variable step size enhances the performance compared to fixed step size by up to
29 %.

Concerning the second part, we devise and evaluate different flit ranking policies.
A flit ranking policy chooses which flit should be served first, thus it determines which
flit can select an output port first. In this work, we propose novel ranking policies that
take the deflection behavior of the bufferless NoC into account. Via the experimental
study, we compare these policies to the Oldest First (OF) ranking policy. Simulation
results show that the performance of the proposed policies excels over fixed step size
MaxFlex with OF as ranking policy by up to 58%.

Finally, we focus on congestion prevention for bufferless NoC running latency-
sensitive applications. NoC congestion is one of the main roadblocks that prevent the
bufferless NoC to operate under high injection rates. Thus, by relaxing the congestion,
bufferless NoCs can approach the performance of buffered NoCs but without the extra
cost of using buffers (power and area). To address this problem, we propose prevention
mechanisms that target the deflection count of the flits. The proposed approaches aim
to give more space for the flits to roam leading to fewer deflections which directly
affects the overall packet latency. Via simulation, we show that the proposed
approaches enhance the packet latency by 61% compared to fixed step size MaxFlex.



Chapter 1 : Introduction

In the last few years, there is an industry wide switch to many-core and multi-core
systems. In such systems, the performance of the communication system is very critical
to the performance of the whole system.

Network-on-Chip (NoC) has emerged as a solution for the limitations in the
traditional communications approaches (e.g. buses) especially after the tremendous
increase in the number of the communicating modules within a single silicon chip [1,2].
NoC is a group of switches connecting homogeneous or heterogeneous nodes in a
multiple point-to-point fashion [3,4]. NoC switches forward the data to/from the
nodes/switches over links equipped with input and output buffers.

Buffered NoCs became the de facto approach for communication between cores
within chip as they are more scalable, reliable, and predictable. Buffered NoCs were
shown to consume significant power and chip area. For instance, in the Intel Teraflops
chip and the MIT RAW chip, NoC fabric consumes around 30% and 36% power
respectively [5,6]. Focusing on a single NoC switch, a considerable fraction of power
and area is used by the internal buffers of the switch. In [7,8], the buffers within a
single switch consume around 37% power and 80% area. In addition to being heavy
power and area consumers, buffered NoCs are more complex to design as they require
extra handlers for packets placement and buffer overflow.

Bufferless NoC has emerged as a solution to decrease power and area requirements
[9,10,11,12]. Bufferless NoC eliminates the buffers used within switches; which has a
direct impact on power and area. In contrast to the traditional buffered NoC; when two
packets compete for the same output port, the allocator either drops or deflects
(misroute) the losing packet instead of buffering it. Dropped packet should be
retransmitted again. On the other hand, deflected packet follows a non-productive port.
Due to the hazards accompanying the dropping mechanism such as handling positive
(ACK)/negative (NACK) acknowledgement (NACK buffers [9], NACK network [11]),
storing the packet within the source node (extra storage), and retransmission (increase
the total network load), in this thesis, we adapt the deflection approach.

Even though bufferless NoCs have their advantages regarding area and power
consumption, they have their own problems. Eliminating buffers helps in decreasing the
chip area and limiting the consumed power, but at the same time, the flits have no place
to reside in case of port contention which leads to dropping or deflecting the flits. This
dropping/deflecting mechanism results in increasing the NoC traffic volume which in
turn consumes link bandwidth.

Both mechanisms under low to medium rates lightly affect the performance (packet
latency and deflection count) leading to a performance approaching buffered NoCs. On
the other hand, under high injection rates, the number of packets increases leading to
more contention, as a result, using bufferless NoCs leads to reducing the total available
bandwidth (as a result of increasing the traffic volume due to retransmitting the flits or
deflecting the flits away from their destination) which eventually leads to a
performance worse than buffered NoCs. Thus, bufferless NoC is shown generally to
function efficiently under moderate loads and smaller NoC sizes [10].

In this thesis, we study several aspects of bufferless NoC to serve latency-sensitive
applications. In other words, we aim to operate latency-sensitive applications on



Node

1T [Switch

Figure 1: Generic switch in a 2D mesh

bufferless NoCs under high injection rates without inducing extra power or chip area
usage. This work follows three tracks; enhancing performance through output selection
functions, enhancing performance through flit ranking policies, and finally, enhancing
performance through congestion prevention.

1.1. Basic Background

In this section, we formally introduce some notations that shall assist in describing
the scope and contribution of this work. Specially: (1) buffered NoCs, (2) bufferless
NoCs, (3) selection functions, (4) maximum flexibility, (5) flit ranking policies, and (6)
congestion management. We now discuss these topics briefly.

1.1.1. Buffered NoCs

A 2D buffered NoC is a two dimensional array of nodes. Each node is connected to
the network using a switch. The switches are connected in a multiple point-to-point
fashion. Switches forward the data to/from the nodes and/or switches over links. Each
link is equipped with input and output buffers. The data is delivered as packets where
each packet is divided into several flow control units called flits. Topology defines the
networks logical layout (connections). A sample switch in a 2D mesh is shown in
Figure 1.

Buffered NoCs are used widely as a communication fabric. To handle the
contention that may occur between two flits arriving simultaneously at an output port,
buffered NoCs use the input buffer to store the incoming flits. By doing this, the switch
can store the flits that lost the arbitration and forward the winning flits.

Buffered NoCs have the drawback of consuming significant power and area. For
example, the NoC fabric in the Intel Teraflops chip and the MIT RAW chip consumes
30% and 36% respectively of the required power [5,6]. Also the network occupies large
chip area (for example, 80% area [7,8]) due to buffer usage. Beside consuming power
and area, buffered NoCs are complex to design due to the need to implement different
scenarios for handling the buffers logic. One way to reduce the required power and chip
area is to eliminate the buffers within the network; i.e. bufferless NoC.



1.1.2. Bufferless NoCs

Bufferless NoCs have been proposed to reduce the power and area consumption
and to simplify the design process. This is done by removing the input and output
buffers.

Bufferless NoCs handle the output port contention by either dropping the losing
packet or by deflecting it. Bufferless NoCs that use the dropping mechanism chooses to
drop the packet that lost the contention competition. By dropping the packet, bufferless
NoCs have to retransmit this packet which leads to an increase in the network traffic
and/or the hardware cost and design complexity.

The deflecting bufferless NoCs choose not to drop any contending packet. Instead,
bufferless NoCs forward all the incoming packets to output ports even if it means to
forward the packets through longer paths (non-productive ports). The deflecting
buffered NoCs are preferred due to their simpler design, and less power and area cost.

However, using bufferless NoCs can cause degradation in the performance. A
recent study [10] showed that the power and area gains exceed the degradation in the
network performance when NoC load is low to medium, which matches many of the
real-life applications.

1.1.3. Selection Functions

To route a packet successfully from a source node to a destination node, it is
required to have a routing function and a selection function. The routing function
calculates the path to follow between a source—destination pair and offers a set of
output ports to get closer to the destination. The selection function selects an output
port from the supplied set of ports.

Routing could be classified as deterministic or adaptive based on the selection
function. Routing is deterministic if the selection function delivers the same port for
each source-destination combination each time. On the other hand, routing is adaptive
if the selection function delivers a port based on the network state, thus the selection
function may deliver different port each time it is used [3].

Many selection functions exist for 2D meshes such as Straight Line (similar to
dimension order routing DO) which favors X (or Y) dimension than Y (or X) till no
more steps left in X (or Y) and then alternate to the other dimension i.e. Y (or X).
Another selection function is Random Productive Port which selects one of the flit’s
productive ports randomly. One of the well-known selection functions is Maximum
Flexibility.

1.1.4. Maximum Flexibility Selection Function

Maximum Flexibility (MaxFlex) is a selection function that is similar to the z2
routing proposed in [13]. It selects the output port on the dimension with more hops to
the destination (i.e. longest distance to the destination). By doing this, MaxFlex
maximizes the number of productive ports provided by the routing function as the flit
approaches its destination. In other words, MaxFlex prevents the flit from being stuck
in one dimension leading to one productive port only.

MaxFlex tries to move the packets on a diagonal between the source and the
destination. Packet initially follows the dimension with higher hop count. When it
reaches a switch where the difference in the X-dimension is equal to the difference in



the Y-dimension, it follows the diagonal. The path of the diagonal is dependent on the
step size used. Step size of SS means that a packet moves SS steps in X-dimension and
then SS steps in Y-dimension.

MaxFlex causes the traffic to be concentrated in the central part of the network
bisection as it tries to move on the diagonals. This leads to uneven switches utilization
which degrades the performance [14].

1.1.5. Flit Ranking Policies

Under normal operation, a NoC switch can receive several flits at the same cycle
from the neighboring switches and/or from the node connected to it. For example, if a
switch, in a 2D mesh topology, is connected to four switches, it can receive up to
maximum five flits at the same cycle. Each flit has its own destination and wants to
pass through its productive port i.e. wants to get closer to its destination. How the
switch determines the order by which it will serve the incoming flits is determined by
the ranking policy. In other words, it determines which flit can select an output port
first.

Different ranking policies lead to different service order for the flits travelling
through the NoC. To be more specific, different policies lead to different arrival order
for the NoC flits which leads to a different set of flits reaching their destination before
the others. The delivery of a certain set can result in a better performance but this is not
the only factor. Flit ranking schemes have a direct effect on livelock property in the
NoC [3,4]. Some schemes can result in packets travelling indefinitely the NoC and
never reaching their destinations.

In bufferless NoC, due to the buffers elimination, the ranking policies have a
greater effect on the overall performance as the flit that fails to get its productive port
will be forced to take a detour.

Different criteria can be used as ranking policies. For example; Oldest First (OF)
policy ensures there is a total age order among flits and prioritizes older flits, Closest
First (CF) policy prioritizes the flits with smaller distance to their destinations before
flits whose remaining distance is larger, Most Deflections First (MDF) policy gives
higher priority to the flits with more deflections, and Round Robin (RR) policy ranks
the flits from different input ports in a round robin fashion.

1.1.6. Congestion Management

Under high injection rates, the traffic volume in the NoC increases causing more
strain on the NoC links and buffers. When the NoC reaches a point where the buffers
and the links are occupied and can’t handle the traffic load, then the NoC is said to be
congested. Under congestion, the NoC can’t function properly and can’t retain its
normal performance. Specifically, the flits simply continue roaming in the NoC without
reaching their destinations which increases the traffic volume and prevents the injection
of new flits (i.e. nodes starvation).

In bufferless NoC, the congestion can arise and develop more quickly and severely
as the links are the only available buffering resources. Bufferless NoCs have been
shown to function efficiently under moderate loads and smaller NoC sizes [10]. But
under high injection loads and due to the lack of buffers, bufferless NoCs fail to operate
and scale efficiently causing a collapse in the overall performance. This prevents



bufferless NoCs from competing with buffered NoCs performance especially under
high injection rates.

To tackle the congestion in a NoC, one of the approaches is to detect the
congestion and then control its effect to retain the normal NoC behavior. Another
approach is to provide the needed resources and take various measures to prevent the
congestion from forming in the first place.

1.2. Related Work

In this section we summarize the previous work done related to bufferless NoCs
and to our work specifically. We list the different algorithms, techniques and ideas
related to bufferless routing algorithms, output port selection functions, flit ranking
policies, and congestion management. We survey these topics state-of-art briefly.

Concerning bufferless routing, several previous works examined the use of both
dropping and deflecting routing approaches in bufferless. [9,15,11] proposed dropping
based routing algorithms where the packets with low priority are dropped once a port
contention occurs. These previous studies suffered extra performance loss given the
fact that they require a separate network for the ACK/NACK packets delivery, and they
induce extra traffic load due packet retransmission. In order to reduce the packet
dropping, [16] proposed a selective packet-dropping routing. In [10], a set of deflecting
routing algorithms for bufferless routing (BLESS) was proposed. This study used real
applications and synthetic workloads to evaluate the network energy consumption,
performance, latency, and area requirements of bufferless routing. Their algorithms
resulted in around 40% energy reduction with a small degradation in the performance
under light traffic. Also, the algorithms save around 60% of area requirements.
However, in [12], BLESS was shown to be complex for hardware implementation due
to its output allocator. The work done in MaS [17] solved some of the drawbacks in
[12] by using packet-sized buffer at each switch which is used to hold the packet with
higher priority in case of contention thus decreasing the receiver side buffering
requirements caused by the out-of-order delivery of BLESS (caused by either the
truncation or by considering each flit as a head flit) by 80%. Also, MaS achieves better
average packet latency and average power consumption compared to BLESS by 10%
and 9% respectively. Also, in [18], a simplified bufferless router (CHIPPER) was
presented, in which a permutation network was designed to solve the output allocation
problem in BLESS. However, its deflection rate is high at the medium-to-heavy traffic
load. Several works [19,20,21] have been proposed to reduce the packet deflections by
adding a few buffers. In [20], a hybrid bufferless router (MinBD) was presented, in
which a bufferless router is combined with a small side-buffer. In addition, a buffer
controller was designed for identifying the packets which would be deflected and are
needed to be temporarily stored in the side-buffer. While in [19], a hybrid bufferless
router with an adaptive flow control (AFC) was presented, in which the routing scheme
switches between the buffered and bufferless routing according to the network load.
However, using buffers in [19,20,21] weakens the primary advantage of the bufferless
NoC in cost and energy. The authors in [22] approached the problem by trying to
decrease the deflection count as a cause for the performance degradation in bufferless
NoCs. They constructed three deflection models to analyze the deflection causes, and
proposed a deflection routing based on turn model to reduce the deflections during
packet transmissions. The experimental results for [22] showed a reduction in the
deflection rate by 41% compared to other bufferless networks.



As for the selection functions, in [13], the authors proposed zigzag (z°) selection
function (the inspiration for MaxFlex) as an optimal selection function for mesh
topology. However, in [14,23,24], the authors analyzed different selection functions for
mesh topology and found that z? is not the best for this topology. [25] presented a
topology-independent selection function. None of the previous studies evaluated the
MaxFlex on bufferless NoCs or evaluated the effect of changing the value for the used
step size. Other studies focused their attention on other topologies such as fat-trees. [26]
was the first to propose and evaluate different selection functions for fat-trees. The
study showed that a selection function dependent on current switch address and
destination address (SADP) has slightly better performance in case of uniform traffic as
it balances the load on the links. The authors in [27] proposed and analyzed a selection
function dependent on the stage and the source node (SAOP) that outperformed other
selections functions in hot-spot traffic. In [28], the authors proposed a cost-efficient
congestion management mechanism for fat-trees that detects the current traffic pattern
and switch to a certain selection function that is proved to give better performance
under the detected traffic pattern. The work done in [29] proposed Cool Centers
Priority (CCP) selection function for buffered 2D meshes to eliminate hot-spots, and to
guarantee load balancing.

Concerning flit ranking policies, in [30], the authors showed that ranking-based
policies using global or history-related criterion are beneficial in a deflection-based
NoC. [10] evaluated several flit ranking polices (OF, CF, MDF, and RR) under BLESS
and selected OF as their primary ranking policy as it is guaranteed to avoid livelock.
However, the authors in [22] chose MDF as their main ranking policy as they aimed to
decrease the overall deflection count.

Finally, for the congestion management, [31,32,33] were proposed to adjust the
network load. These previous studies controlled the injection rate of each node, and
restricted the injection of latency-insensitive processing node if the network load
becomes heavy. However, these studies lacked the detailed understanding of the
workloads, which made the system design more difficult. In [34], the authors proposed
a distributed congestion control mechanism (Cbufferless) for bufferless NoC. This
study detected network congestion by monitoring deflection information of the flits and
used dynamic node throttling for the node(s) causing network congestion.

1.3. Scope of the Thesis

This thesis has three main directions regarding bufferless NoCs. These three
directions aim for a performance similar to buffered NoCs under high injection rates.
The first direction targets the selection functions specifically MaxFlex. It reduces the
packet latency and the average deflection count via increasing and varying the used step
size. The second investigates the flit ranking policies. It enhances the performance via
using policies that exploit the properties of the bufferless NoCs specifically the
deflection behavior. Finally, the third direction aims to relax the NoC congestion. It
achieves that by giving more space for the flits to roam and/or organizing the
applications’ injection behavior. In each direction, we propose new approaches that
enhance the performance while trying to keep the area and the power intact.



1.3.1. Increasing and Varying Step Size Under MaxFlex

The first direction of this thesis focuses on enhancing the traffic distribution under
MaxFlex in order to decrease port contention in 2D bufferless meshes. Typical
MaxFlex (Step Size = 1) tends to focus the traffic on the NoC diagonal (central part)
which leads to increase in the port contention and as a result increases the deflection
count and the packet latency. In Chapter 3, we present a study, both analytical and
experimental, on the effect of increasing the step size under MaxFlex on the traffic
distribution and eventually on the overall performance. We also propose the ideal step
to use under different mesh sizes.

For the analytical part; we identify 12 types of traffic that constitute collectively
the MaxFlex traffic in the network. The analysis shows that increasing the step size
leads to a better load distribution over the NoC switches. In other words, the central
part of the network bisection becomes more relaxed.

Then, we simulate a 10x10 mesh under uniform traffic and use step size values
ranging from 1 to 9 to check the effect the NoC performance. The results show that
increasing the step size leads to better packet latency and smaller deflection count thus
enhancing the NoC performance. To be exact, using a fixed step size of 8 enhances the
packet latency and the deflection count by 95% and 38% respectively compared to
using Straight Line selection function. Also, for different mesh sizes, simulation results
show that a step size of 60-80% of the mesh dimension leads to better performance.

In Chapter 4, we address the idea of using different step size for each packet. By
using variable step size, we tend to further enhance the traffic distribution aiming to
utilize more links and hence decrease the contention and the deflections. We propose
different formulas for determining the variable step size value for each packet. Each of
the proposed formulas is devised to be a function in the distance between the source
and destination. The formulas fall into one or more of the following categories;
formulas that consider the distance between the source and destination as nodes,
formulas that consider assigning the NoC nodes to virtual regions and then consider the
distance between the source and destination regions, and finally, formulas that also use
the regions concept but differ between in-region and out-region routing.

Simulating these formulas under 10x10 mesh conforms that varying the step size
(using a valid formula) leads to better distribution for the flits among the NoC links
thus better NoC performance. Specifically, the results show that using a variable step
size can enhance the results over using a fixed step size of 8 by up to 29%. The results
come in line with the analytical results of increasing the fixed step size.

1.3.2. Evaluating Flit Ranking Policies

In this direction, we exploit the deflecting bufferless NoCs properties to provide
better performance. Based on the results from the fixed/variable step size study and
from recent bufferless NoC study [22], in Chapter 5, we study the effect of the flit
ranking policies on 2D bufferless meshes’ performance, and propose various policies
tailored to decrease the flits’ deflections in the NoC. In other words, the proposed
approaches favor the flit with more deflections as extra detouring for this flit leads to
extra delay thus increasing the overall packet latency.

We investigate the usage of the flit’s deflection count along with its age and the
distance between its source and destination. Also, we develop an enhancement over the
proposed policies. The enhancement favors the flit with steps in one direction only as
any deflection shall result in at least two hops to correct its path.

7



We simulate a 10x10 mesh using the enhanced deflection-based approaches. The
experiments show that proposed policies lead to better performance. Specifically, using
the proposed enhancement along with the proposed policies decreases the packet
latency by 58% compared with using fixed step size MaxFlex with Oldest First ranking

policy.

1.3.3. Preventing the Congestion

The final direction aims to prevent the bufferless NoC congestion. In Chapter 6, we
study the congestion in bufferless NoCs, and propose two mechanisms for preventing
the congestion development. Both of the proposed mechanisms prevent the congestion
by providing more space for the flits to move by decreasing and/or dividing the traffic
volume.

We investigate how to relieve the traffic volume thus preventing the congestion
from developing in the first place. To be able to do that, we provide more links
bandwidth to the flits so that they have more freedom in their movement towards their
destinations. We propose two mechanisms to perform this freedom.

First, we propose running the applications on a NoC larger than what is required.
For example, instead of running the application mix on a 3x5 mesh, we propose
running the same application mix on a 4x4 mesh. The idea behind this mechanism is to
take advantage of the extra links provided as a result of using the larger NoC thus
providing extra space for the flits to move with less competition with the other flits.

Second, we propose dividing the application mix into smaller sets, and then run the
smaller sets sequentially on the whole NoC. The smaller application mix in
combination with the sequential operation leads to injecting less data into the NoC in
each smaller run which directly affects the deflection count and the packet latency in a
positive way.

We simulate both mechanisms on a 10x10 mesh and measure the enhancements in
the performance. Using the proposed prevention mechanisms enhances the packet
latency and the deflection count by 61% and 68% respectively compared with using
fixed step size MaxFlex.

1.4. Contribution of the Thesis

With the increasing demand on mobile processing, two main engineering factors
come into sight: chip area and power. With the interconnection as an important element
of modern processors and a main contributor to chip area and power; the decision of
optimizing the interconnection area and power is one of the top-list goals in design.

In this thesis, we aim to make the bufferless NoCs work in a fashion similar to
buffered NoCs under high injection rates while keeping the area and power gains. We
optimize bufferless NoCs through adopting multiple approaches: enhance using
selection functions, enhance using ranking policies, and enhance using congestion
prevention. The proposed approaches aim to decrease the overall packet latency and
average deflection count. Additionally, the approaches aim to push the injection rate
boundary for the bufferless NoCs making it feasible in a wider range of practical
applications instead of using the heavy area and power consumer - the buffered NoCs.

First, we propose using larger step sizes under MaxFlex selection function (instead
of using a step size of one). We thoroughly analyze the MaxFlex under uniform traffic
and identified 12 types constituting the traffic. Through using larger step sizes, the

8



traffic concentration becomes more distributed among the center and border switches
leading to less contention among the flits. Using larger step sizes, we are able to use
bufferless NoCs under higher injection rates while keeping the average packet latency
and average deflection count feasible. We also propose novel approaches for using
variable step size for each flit instead of using fixed step size for all the flits. These
approaches utilize the NoC links better leading to even better performance. These
enhancements are achieved without using any extra buffers thus we keep the chip area
small. Also, we distribute the traffic leading to using more links but the frequency of
each link decreases which keeps the power usage in its normal figures.

Ranking policies aims to put an order for serving the flits. Knowing that the
deflection count for the flits plays a great role in the overall performance, we propose
several policies that aim to decrease the overall deflections resulting in better
performance. By devising polices based on the flits’ deflection count, we aim to favor
the flits that suffered more deflections while not causing extra new deflections for other
flits. Also, as in the selection functions, these ranking schemes don't use any extra
buffers leading to good area and power performances.

Finally, the main roadblock for bufferless NoCs is quickly becoming congested.
We propose novel mechanisms for preventing the congestion by mitigating the initial
cause for the congestion i.e. the traffic volume. As the traffic volume increases, and in
addition to the absence of buffers, the flits have to compete with each other more
frequently leading to more deflections and thus detouring. This unneeded detours make
the flits travel in the NoC without reaching their destinations. The proposed
mechanisms prevent the congestion by decreasing the traffic volume via using larger
NoC or via organizing the applications work load. The proposed mechanisms fit the
latency-sensitive applications that can be divided and allocated to different parts of the
NoC. By organizing the applications allocation and operation, we achieve low packet
latency and deflection count while keeping feasible power and area figures.

1.5. Organization of the thesis

This thesis is organized as follows. Chapter 2 explains the preliminaries of the
concepts adopted in this thesis. In Chapter 3, we analyze and simulate the usage of
fixed step size greater than one under MaxFlex. Chapter 4 presents a study for the use
of variable step size under MaxFlex. In Chapter 5, we propose several flits ranking
policies and show their performance. Chapter 6 addresses the congestion problem in
bufferless NoCs by proposing and evaluating two congestion prevention mechanisms.
Finally, in Chapter 7 we summarize our findings and make some concluding remarks
concerning the current and future work.



Chapter 2 : Background

In this chapter, we present some preliminaries and concepts that are used in this
thesis. We start with interconnection networks in Section 2.1. In Section 2.2 and
Section 2.3, we discuss Network-on-Chip and bufferless Network-on-Chip respectively.
Section 2.4 explains the idea behind selection functions. Then, Section 2.5 discusses flit
ranking policies and their use. Finally, congestion management is discussed in Section
2.6.

2.1. Interconnection Network

7

Bidirectional Channel

Terminal J’
@(—)[Interconnection Network](—)@

Figure 2: Example of interconnection network

An interconnection network is a programmable system that transports data between
terminals. The interconnection network system is composed of buffers, channels,
switches, and controls that function together to deliver data. Figure 2 shows an example
for an interconnection network with four terminals (T1 — T4) connected to it. To
communicate with terminal T;, T; sends a data message into the network and the
network delivers the message to T;, where 1 < i,j < 4andi # j.

The network is considered programmable as it makes different connections at
different points in time. For example, the interconnection network in Figure 2 can send
a message from T2 to T3 in one cycle and then send a message from T2 to T1 in the
next cycle using the same resources.

Many systems with different scale fall under the above definition. For example, on-
chip networks can deliver data between memory, registers, and arithmetic modules
within a processor. On the other hand, system-level networks connect processors,
memories, input/output (1/0) ports. Finally, local-area and wide-area networks connect
different systems together within an enterprise or across large geographical distance.

Interconnection networks can be found in almost all digital systems. Specifically,
in computer systems, they connect processors to memories and I/0O devices to 1/O
controllers. While, in communication switches and network routers, they connect input
ports to output ports. Also, they connect sensors and actuators to processors in control
systems.

Around the late 1980s, most of the mentioned systems used the bus architecture as
their interconnection network. However, recently all high-performance interconnections

10



Node
E' w

T (Switch
w TI

2

Figure 3: Generic switch in a 2D mesh

use point-to-point interconnection networks rather than buses. This change is due to the
inability of buses to keep up with the enhanced processor performance and the
bandwidth demand. On the other hand, point-to-point interconnection networks operate
faster than buses.

Interconnection networks are important because they are a limiting factor in the
performance of many systems. The interconnection network connecting processor and
memory largely determines two main performances metrics in a computer system,
namely, the memory latency and memory bandwidth. In communication switches, the
performance of the interconnection network determines the data rate and the number of
ports of the switch.

2.2. Network-on-Chip (NoC)

In a chip multiprocessor (CMP) architecture, the NoC generally connects the
processor nodes and their private caches with the shared cache modules and memory
controllers. In a typical NoC, each node has a high-speed buffered switch that connects
the node to its neighbors by links. The width of a link varies. Nodes send and receive
packets; typical packets are small request and control messages, such as cache block
read requests, and larger data packets containing cache block data. Packets are
partitioned into flits which are the atomic unit of traffic. Flits have size equal to the
width of a link. Typically, links have a latency of only one or two cycles, and are
pipelined, so that they can accept a new flit every cycle.

NoC topology defines the networks logical layout (connections). Various NoC
topologies exist, but the most used topology is the 2D mesh [3,4], which is
implemented in several commercial products [35,36] and research prototype many-core
processors [7,37,38]. In mesh topology, each switch has maximum of 5 input and 5
output channels/ports; one from each neighboring switch and one from the node
connected to it. A sample switch in a 2D mesh is shown in Figure 3.

Since the switch plays a crucial role in the NoC, its design needs to be simple to
simplify the overall NoC design. As a result, current implementations tend to use
simple routing algorithms. The most common routing algorithm is Dimension Order
routing (DO) which route the flit first along the X direction until the destination’s Y
coordinate is reached; then route to the destination in Y direction.

NoC has a set of characteristics that differentiate it from the traditional networks.
We summarize these characteristics in the following points:

11



1) Topology: The topology is statically known, and usually very regular. A
change in topology impacts various aspects, such as routing and traffic-load.

2) Latency: Links and switches have latency much lower than traditional
networks.

3) Routing: Routing logic is designed to minimize the complexity and the latency
as the NoC switch stages must take no more than a few cycles.

4) Coordination: Global coordination is possible and often less expensive than
distributed adaptive mechanisms, due to a relatively small known topology,
and low latency.

5) Links: Links are expensive in terms of both hardware complexity and on-chip
area.

6) Traffic Patterns: Cache miss behavior of the running applications drive traffic
patterns in a NoC.

7) Power: The existence of a constrained power budget differentiates NoCs from
traditional networks.

2.3. Bufferless Network-on-Chip

Recent work has shown that it is possible to eliminate buffers from the NoC
switches. In such bufferless NoCs, application performance degrades minimally for
low-to-moderate network intensity workloads, while some work shows that power
consumption decreases by 20-40%, router area on die is reduced by 75%, and
implementation complexity also decreases [10]. While other evaluations have shown
that optimizations to traditional buffered router designs can make buffers more area-
and energy-efficient [12], bufferless design techniques such as those in [18,20,17,22]
address inefficiencies in bufferless design. In a bufferless NoC, the general system
architecture does not differ from traditional buffered NoCs. However, the lack of
buffers requires different injection and routing algorithms in the network.

As in a buffered NoC, a bufferless NoC injects and routes flits synchronously
across all nodes/switches. The node is able to inject each flit of the packet into the
network as long as one of its output links is free. Injection requires a free output link as
there is no buffer to hold the packet in the switch. If no output link is free, the flit
remains queued inside the node. A flit is routed to a neighbor based on the routing
algorithm, and the arbitration policy.

Flits are arbitrated to output ports based on the required direction and the ranking
policy used. If flits contend for the same output port, their ranks are compared, and the
one with higher rank (priority) obtains the port. The other contending flit(s) are either
dropped or by deflected.

Bufferless NoCs that uses the dropping mechanism chooses to drop the packet that
lost the contention competition. By dropping the packet the NoC has to retransmit this
packet which leads to an increase in the network traffic and/or the hardware cost and
design complexity.

The deflecting bufferless NoCs choose not to drop any contending packet. Instead,
it forwards all the incoming packets to output ports even if it means to forward the
packets through longer paths (non-productive ports). The deflecting buffered NoCs are
preferred due to its simpler design and less power and area cost. An example for a
deflecting bufferless NoC is BLESS [10].

Previous work [10] has shown significant reductions in chip power and area from
eliminating buffers in the NoC, however, that work has focused primarily on low-to-

12



Figure 4: The operation of MaxFlex selection function using step size of one

medium network load. Higher levels of network load remain a challenge, and
improving performance in these cases increases the applicability of bufferless NoCs.
Furthermore, as the size of the CMP increases, the efficiency gains from bufferless
NoCs become more important.

2.4. Selection Functions

A routing algorithm is divided into two functions: routing function and
selection function. The routing function provides a set of productive output ports
based on the current node and the destination node. The selection function
selects from this set based on the status of the output ports at the current node.
This selection is performed in such a way that a free channel (if any) is supplied.
The routing function determines whether the routing algorithm is deadlock-free
or not. However, the selection function only affects performance.

There are two ways to perform the selection: the selection function can
ignore the network state, for example, the selection can be random; or the
selection can take into account the status of output ports and channels at the
current node. Obviously, the selection second approach is better as it works
based on some sort of feedback from the NoC.

When several output ports are available, some policy is required to select
one of them. Policies can have various goals, for example, balancing the use of
resources, reserving some bandwidth for high-priority packets, or even delaying
the use of resources to be used for deadlock avoidance. However, under any
policy, the selection function should give preference to ports belonging to
minimal paths i.e. productive ports. Otherwise the selection function may
produce livelock.

13



Various selection functions exist for n dimensional meshes with the goal of
maximizing performance. Three of the well-known selection functions are
Minimum Congestion (MinCon), Maximum Flexibility (MaxFlex), and Straight
Line (SL).

In MinCon, a virtual channel is selected in the direction with the most
available virtual channels. This selection function works with buffered NoCs and
tries to balance the use of virtual channels in different physical channels. The
idea behind this selection function is since the packet transmission is pipelined,
then flit transmission rate is limited by the slowest stage in the pipeline.
Balancing the use of virtual channels balances the bandwidth allocated to
different virtual channels.

In MaxFlex, a channel (physical or virtual) is selected in the dimension with
the greatest distance to travel to the destination. This selection function tries to
maximize the number of routing options as a packet approaches its destination.
This selection function can perform under both buffered and bufferless NoCs.
Specifically, MaxFlex first moves the flit till the number of hops left in the X-
dimension is equal to the number of hops left in the Y-dimension. After that, MaxFlex
moves the flit one step on the X-dimension and then one step on the Y-dimension i.e.
MaxFlex tends to move the flit on a diagonal. Figure 4 shows the operation of MaxFlex
selection function.

In meshes, MaxFlex selection function concentrates the traffic in the central
part of the network bisection producing uneven channel utilization which
degrades the NoC performance. This downside has more effect in buffered NoCs
than in deflection-based bufferless NoCs due to the lack of buffers and the
deflecting behavior in the latter case. The absence of buffers forces the flits to be
deflected, in contrast to moving into one of the available buffers (in case of
buffered NoCs). This deflection behavior moves small portion of the traffic
away from the central NoC switches, thus decreasing the concentration.

Finally, in SL, a channel (physical or virtual) is selected in the dimension
closest to the destination. So, the packet travels in the same dimension whenever
possible. This selection function tries to route packets in dimension order unless
the requested port in the corresponding dimension is not available. This selection
function can perform under both buffered and bufferless NoCs. In meshes, this
selection function achieves a good distribution of traffic across the network
bisection as it tends to move the traffic more towards the NoC borders.

2.5. Flit Ranking Policies

As mentioned above, routing algorithms compute the productive port(s) to move
the flit from the current switch to the destination switch via a routing function, and then
select the output port for the flit via a selection function. If multiple flits simultaneously
request the same output port, some sort of arbitration must be provided between them.

Different arbitration approaches can be used to allocate the required channel
bandwidth including random, round robin (RR), or ranking policies. For random
selection, any flit is selected randomly without considering the NoC status. For RR
selection, output ports are arranged in a circular list. When a port transfers a flit, the
next port in the list is selected for the next flit transmission. Finally, ranking policies

14



uses various criteria to determine which flits should be served first. Ranking policies
require some information to be carried in each flit to be used as thee ranking criterion.

Different criteria can be used as ranking policies. For example; Oldest First (OF)
policy ensures there is a total age order among flits and prioritizes older flits, Closest
First (CF) policy prioritizes the flits with smaller distance to their destinations before
flits whose remaining distance is larger, and Most Deflections First (MDF) policy gives
higher priority to the flits with more deflections.

Different arbitration (and ranking policies) leads to different service order for the
flits travelling through the NoC. To be more specific, different arbitration leads to
different arrival order for the NoC flits which leads to a different set of flits reaching
their destination before the others. The delivery of a certain set can result in a better
performance but this is not the only factor. The selected arbitration has a direct effect
on livelock property in the NoC [3,4]. Specifically, an arbitration approach can result in
flits travelling indefinitely the NoC and never reaching their destinations.

In bufferless NoCs, due to the buffers elimination, the used arbitration approach
has a greater effect on the overall performance compared to buffered NoCs as the flit
that fails to get its productive port will be forced to take a detour. However, in buffered
NoCs, if the requested port is busy, the flit remains in the input buffer and shall be
routed again after the port is freed and if it successfully arbitrates for the port.

2.6. Congestion Management

Under high injection rates, the traffic volume in the NoC increases causing more
strain on the NoC links and buffers. When the NoC reaches a point where the buffers
and the links are occupied and can’t handle the traffic load, then the NoC is said to be
congested. Under congestion, the NoC can’t function properly and can’t retain its
normal performance. Specifically, the flits travel in the NoC without reaching their
destinations which increases the traffic volume and prevents the injection of new flits.

In bufferless NoC, the congestion can arise and develop quickly and severely as the
links are the only buffering resources. Bufferless NoCs have been shown to function
efficiently under moderate loads and smaller NoC sizes [10]. But under high injection
loads, and due to the lack of buffers, bufferless NoCs fail to operate and scale
efficiently causing a collapse in the overall performance. This prevents bufferless NoCs
from competing with buffered NoCs performance especially under high injection rates.

To tackle the congestion in a NoC, one of the approaches is to detect the
congestion and then control its effect to retain the normal NoC behavior. Another
approach is to provide the needed resources and take various measures to prevent the
congestion from forming in the first place.

The detection and control approaches apply heuristics and monitor the NoC
performance to detect the congestion once it arises. If congestion is detected, these
approaches apply a control mechanism to relieve the congested areas. The problem with
these approaches is that if the heuristics used to monitor the performance or the actions
taken to relieve the congestion are biased or excessive, the overall performance of the
system is affected.

On the other hand, the prevention approaches uses extra resources to decrease the
probability of developing the congestion. The idea is to use the extra resources to
provide other options for the flits in case of contention under high traffic volume. For
example, a buffered NoC can use extra buffers to host the flits in case of increased
traffic volume.

15



Chapter 3 : Modified Maximum Flexibility Selection
Function

As stated before, routing is composed of routing function and selection function.
Maximum Flexibility (MaxFlex) selection function [13] was introduced with the
advantage of maximizing the number of productive ports provided by the routing
function as the flit approaches its destination. However, MaxFlex selection function
uses a step size of one.

In this chapter, we investigate the effect of using a step size larger than one under
MaxFlex selection function. First, we propose the modified MaxFlex selection function
(MMaxFlex) and show its operation. Then, we provide a thorough analytical study for
MMaxFlex. In our analysis, we begin by analyzing the traffic in 2D meshes under
MMaxFlex for any step size. Then, we prove that any packet passing through a node
can be classified into one of twelve traffic types. Finally, we derive the count of packets
for each type passing through a switch. We also provide simulation results and explain
how it conforms to the analysis.

The chapter is organized as follows; Section 3.1 provides the motivation behind the
MMaxFlex, and how it works. Then, we analyze the effect of the step size under
MMaxFlex on the packets distribution in Section 3.2. In Section 3.3, we prove that any
packet under MMaxFlex passing through a switch can be classified into one of twelve
traffic types. We provide the effect of using MMaxFlex on the distribution of packets
within the NoC in Section 3.4. Sections 3.5 and 3.6 present the experimental setup and
the simulation results respectively. In Section 3.7, we estimate the value of the step size
based on the dimensions of the NoC. Finally, Section 3.8 makes some concluding
remarks.

3.1. Proposed Approach

MaxFlex selection function tends to alternate the flit’s movement on both
dimensions as a way to make more productive ports available for the flit. Specifically,
MaxFlex first moves the flit till the number of hops left in the X-dimension is equal to
the number of hops left in the Y-dimension. After that, MaxFlex moves the flit one step
on the X-dimension and then one step on the Y-dimension i.e. MaxFlex tends to move
the flit on a diagonal. Figure 5 shows the operation of MaxFlex selection function.

The main problem with MaxFlex is that it tends to concentrate the traffic on the
central part of the NoC leading to more contention between the flits to get the required
output ports, thus leading to more deflections in case of bufferless NoC. Eventually, the
flit takes more cycles to reach the destination i.e. higher average packet latency.

In this chapter, we propose a modified version of MaxFlex (MMaxFlex) to keep
the freedom provided by the MaxFlex selection function while relaxing the contention
on the central NoC switches. To achieve our goal, we incorporate the idea of the
Straight Line (similar to DO) selection function property to the MaxFlex selection
function. Straight Line selection function tends to focus the movement of flits on the
NoC'’s border switches while MaxFlex tends to focus the movement of flits on the
NoC'’s central switches (i.e. the switches in the middle of the NoC).

16



——x—>

ST

Figure 5: The operation of MaxFlex selection function using step size of one

As a result, we propose using MaxFlex with a step size greater than one. This
moves the traffic further towards the borders and decreases the concentration on the
NoC’s central switches. This approach leads to less contention and subsequently less
deflections and smaller packet latency. In the next section, we analyze MMaxFlex in
bufferless 2D meshes for any step size.

3.2. Analysis of MMaxFlex Selection Function

In this section, we study the effect of the step size on the distribution of packets
through bufferless n x n two-dimensional mesh network. In doing that, for a certain
step size, we count the number of packets passing through each switch (all ports
included). To simplify the analysis, we divide the traffic going through a switch into 12
different types. Finally, we derive the number of passing packets belonging to each
type.

In the following analysis, we assume that:

1) Each node sends only one packet to each other node (i.e. each node sends
n%-1 packets)

2) Packet length is one Flit

3) No deflections (i.e. path of each packet is only affected by the value of step
size and not by misrouting due deflection). This assumption is set to ease
the analysis.

Before going into the analysis details, we present some definitions and
terminologies that are used throughout the analysis. First, we differentiate between
increasing and decreasing diagonals in a 2D mesh. Figure 6 shows both of the diagonal
types. In the decreasing diagonal, both the X and Y indices increases for each node
along the diagonal. In contrast, the X index increases while the Y index decreases for
each node along the increasing diagonal. A typical 2D mesh switch belongs to an

17



Figure 7: Up and down traffic in 2D mesh

increasing diagonal as well as a decreasing diagonal but not necessarily of same size
(Check Appendix A for more details).

Second, concerning the traffic moving on a diagonal, we divide such traffic to up
traffic and down traffic. Up traffic is the traffic from nodes with higher index to nodes
with lower index, where index is the position of the node in a NoC row or column or
diagonal (depends on the traffic type under study). On the other hand, down traffic is
the traffic from nodes with lower index to nodes with higher index. Figure 7 shows the
difference between up and down traffic.

In the following sub-sections, we study each traffic type separately. All the traffic
types fall under one of two categories:

1) Type resulted from a communication behavior not related to MaxFlex

exclusively

2) Type resulted from a communication behavior related to MaxFlex

18



The first category is concerned with the traffic types that can be a result of other
selection functions, not only MaxFlex. For example, this category can exist if Straight
Line selection function is used. However, the second category exists only due to the
unique behavior of MaxFlex operation.

The twelve traffic types are summarized as follows. Type 1 and Type 2 are
concerned with the traffic resulted from the ejection and injection respectively. Type 3
is a result of row nodes communicating with each other. Similarly, Type 4 is a result of
column nodes communicating with each other. All the previous types (1, 2, 3, and 4)
belong to the first category.

As for the second category, Type 5 is for the communication between the nodes
belonging to the same diagonal. Type 6 and Type 7 are similar to Type 5; however,
both of them are concerned with row or column nodes communicating with diagonal
nodes. Specifically, Type 6 focuses on the communication between row nodes and
diagonal nodes (movement on both row and diagonal switches), while Type 7 focuses
on the communication between column nodes and diagonal nodes (movement on both
column and diagonal switches).

Communication behavior described in Type 8, Type 9, and Type 10 is a result of
the effect of the communication that occurs in Type 5, Type 6, and Type 7 respectively.
For example, in Type 5, as the diagonal nodes do not have direct links between them,
the packet has to move through other switch (not belonging to the same diagonal under
study) to reach the next diagonal node. This kind of movement leads to affecting
switches other than the diagonal under study switches. Types 8, 9, and 10 are concerned
with such effect.

Also, as Type 6 and Type 7 involve row and column movement respectively beside
the diagonal movement; other non-diagonal (row and column) switches are affected by
such communication behavior. Type 11 and Type 12 are concerned with the effect
caused on row and column switches by Type 6 and Type 7 respectively.

Concerning the analysis, we note the following; since the communication behavior
on increasing diagonal is similar to the one done on decreasing diagonal, we focus our
analysis on increasing diagonals only. Additionally, as Type 6 and Type 7 are similar,
we analyze Type 6 in details. Following the same analysis, the equations related to
Type 7 are straight forward. This relation resembles the relation between Type 8, Type
9, and Type 10, and between Type 11 and Type 12. Finally, for all the types except
Type 8, Type 9, and Type 10, we derive equations for counting the number of packets
passing through a switch as a result of the type under study. For Type 8, Type 9, and
Type 10, we count the number of passing packets using pseudo code not equation for
its easier analysis and explanation.

For the analysis, we use the following terminology: For an nxn mesh, let W(i,j) be
a switch located at index, where 1 < i, j < n, and index is the position of the switch in a
NoC row or column or diagonal based on the traffic type under study. Let P be a packet
going from source node S(Xsr, Ysrc) to destination D(Xpst, Ypst). Let AX =
| Xsrc — Xpst| and AY = |Ys,. — Ypg:|. Now, we present the traffic 12 types going
through W(i,j). In each type, we describe the communication behavior, and the number
of packets (denoted as Count) passing through switch W(i,j) as a result of the type
under study.

3.2.1. Type 1 Packets

Description: Packets destined to node W(i,j).
Count: n? — 1

19



index - 1 < n-index—)

Figure 8: Location of W(i,j) in 2D mesh row

™

FS

Proof: Since there are n*1 nodes sending packets to node W(i,j) as their
destination (check the assumptions), then the number of packets passing through
switch W(i,j) is equal to the number of packets ejected to node W(i,j).

|

3.2.2. Type 2 Packets

DescriQtion Packets injected by node W(i,j).
Count: n? — 1
Proof Since node W(i,j) is sending one packet to each of the remaining n®-1 nodes
(check the assumptions), then the number of packets passing through switch W(i,j)
is equal to the number of packets injected by node W(i,j).

|

3.2.3. Type 3 Packets

Description: Packets passing through W(i,j) injected by node (i,k) and destined to
node (i,m) where1 < k,m < nandj = k = m (i.e. same row communication).
Count: 2(index — 1)(n — index)
Where index is the position of W(i,j) in the row under study, 1 < index < n.
Proof: In this type, as shown in Figure 8, switch W(i,j) belongs to a 2D mesh row
at position index. We have (index - 1) nodes before node W(i,j) and (n - index)
nodes after node W(i,j).
For the same row communication, the number of packet passing through switch
W(i,j) is a result of the following:
1) The nodes before W(i,j) send packets to the nodes after W(i,j) i.e. (index - 1)
* (n - index) packets.
2) The nodes after W(i,j) send packets to the nodes before W(i,j) i.e. (n -
index) * (index - 1) packets.
Hence, the overall count is 2 * (index - 1) * (n - index) packets.
]

Examples for illustrating traffic type three are shown in both Figure 9 and Figure
10. Figure 9 shows the value of index and Count for each row switch in 5x5 and
6x6 meshes. Also, it shows the number of packet passing through each switch as a
result of this traffic type. On the other hand, Figure 10 shows an example on how
to calculate the number of passing packets for a row switch in a 5x5 mesh. In
Figure 10, the number of packets passing through switch B(index = 2, n = 5)
equals 6 due to node A sending packets to nodes (C, D, E) i.e. 3 in addition to (C,
D, E) sending packets to A i.e. 3.

20



5x5 Mesh

index=1
Count=0

6x6 Mesh

Count =12 Count =12

Figure 9: Type 3 example for a row in 5x5 and 6x6 meshes

PR
s N
! \
B
\ Il
. ’
N
Count=2%(2-1)*(5-2)=6

Figure 10: Type 3 Count calculation for a row switch in a 5x5 mesh

3.2.4. Type 4 Packets

Description: Packets passing through W(i,j) injected by node (k,j) and destined to
node (m,j) where 1 < k, m < nandi = k = m (i.e. same column communication).*
Count: 2(index — 1)(n — index)

Where index is the position of W(i,j) in the column under study, 1 < index < n.
Proof: The proof for this type is similar to the proof of Type 3.

3.2.5. Type 5 Packets

Description: Packets passing through W(i,j) as a result of communication between
nodes on the same diagonal as node W(i,]).

Count: Count,, +County,, = (index—l){n%nsdexJ +(n'—index){ s
Where n' is the number of nodes in the diagonal under study, 1 < n' < n; index is
the position of W(i,j) in the diagonal under study, 1 < index < n'; and SS is the
value of the step size.

index—lJ

This equation counts the number of packets passing through a given increasing
diagonal switch W(i,j) under up traffic and down traffic. 2

' Type 1, 2, 3, and 4 are not related to MaxFlex selection function only as these types will occur in
almost all routing algorithms under the same assumptions. In other words, no step size is involved in the
? Any of the following analysis (and proof) can be applied to both increasing and decreasing diagonals.

21



|ndex 1

Figure 11: Location of W(i,j) in 2D mesh diagonal

Proof: We consider increasing diagonal for the proof; however, the same proof
applies to decreasing diagonal. In this type, as shown in Figure 11, switch W(i,j)
belongs to a 2D mesh diagonal with n’ nodes. Switch W(l,j) is at position index.
We have (index - 1) nodes before node W(i,j) and (n' - index) nodes after node
W(i,j).

For the same diagonal communication, the number of packets passing through
switch W(i,j) is a result of the following:

1) Under up traffic, some of the nodes after node W(i,j) send packets to the
nodes before W(i,j) based on the step size SS used. Specifically, ln _Sl:dexj

nodes after W(i,j) send packets to the nodes before W(i,j). Hence, the
number of packets is (index - 1) * [ mdexJ packets.

2) Under down traffic, some of the nodes before node W(i,j) send packets to
the nodes after W(i,j) based on the step size SS used. Specifically, [mdex 1J
nodes before W(l,j) send packets to the nodes after W(i,j). Hence, the
number of packets is (n’ - index) * lmdex J packets.

Thus, the overall count is (index - 1) * [n S”;dexJ + (n' - index) *
[mdex

J packets.

22



J B
RN
/ )
¢ /
/
-

o)
/

-
N

Figure 12: Type 5 example for an increasing diagonal

Table 1: Up traffic passing through switch C

Source — Destination Pass W(i,j) or Not
D—B X
D— A4 X
E—B Pass
E— 4 Pass
F—B X
F— A4 X

In order to illustrate the Count calculations, in Figure 12, we show the up traffic
passing through switch C(i = 3, n’ = 6) i.e. traffic from (D, E, F) to (A, B) using step
size of two. Table 1 lists all the communication from (D, E, F) to (A, B) and whether
the packets to (A, B) will pass switch C or not.

Table 1 states that only two packets pass the red switch under up traffic i.e. Count
= 2. Also, applying the up traffic Count equation, the number of packets passing
through the switch C is two i.e. Count = 2 which matches the value deduced from Table
1.

Table 2 shows the Count values for the diagonal switches using different step sizes
under up traffic.

In a similar manner, in Figure 12, the down traffic passing through switch C(i = 3,
n' = 6) i.e. traffic from (A, B) to (D, E, F) using step size of two. Table 3 lists all the
communication from (A, B) to (D, E, F) and whether the packets to (D, E, F) will pass
switch C or not.

23




Table 2: Type 5 Count calculation for an increasing diagonal switches under up

traffic using different SS values

index SS=1 SS=2 SS=3
1 0 0 0
2 4 2 1
3 6 2 2
4 6 3 0
5 4 0 0
6 0 0 0

Table 3: Down traffic passing through switch C

Source — Destination

Pass W(i,j) or Not

A—D Pass
A—E Pass
A—F Pass
B—D X
B—E X
B—F X

Table 4: Type 5 Count calculation for an increasing diagonal switches under down

traffic using different SS values

index SS=1 SS=2 SS=3
1 0 0 0
2 4 0 0
3 6 3 0
4 6 2 2
5 4 2 1
6 0 0 0

Table 3 states that three packets pass the red switch under down traffic i.e. Count =
3. Also, applying the down traffic Count equation, the number of packets passing
through switch C is three i.e. Count = 3 which matches the value deduced from Table 3.
Table 4 shows the Count values for the diagonal switches using different step sizes

under down traffic.

24




k)')_\ *;1%7*\/
N ,B,/\ \/\

\\/
S

Figure 13: Type 6 example for an increasing diagonal under both up and down
traffics

3.2.6. Type 6 Packets

Description: Packets passing through W(i,j) as a result of communication destined
to nodes on the same diagonal as node W(i,j) from nodes with AX > AY (i.e. leads
to moving on a row first). 3

Figure 13 shows an example for the up and down traffic on increasing diagonal
under traffic Type 6. We divide the discussion of Type 6 into four separate sub-types to
ease the calculation for each of them. The sub-types are listed in the following sub-
sections.

3.26.1. Typeb6 (a)

Description: Packets passing through switch W(i,j) as a result of row nodes
communicating with nodes with lower index on increasing diagonal i.e. up traffic.

Count: (index-1) > Qx (1_[(x - lnd?;) mod ssw)
x=index
If diagonal is below main diagonal i.e. n+1— j <i
Q=n-x
Else
Q=n'-x

* Types 6 and 7 are based on the behavior of any two nodes communicating using MaxFlex (except for
same row and column communication). In other words, any two communicating nodes will have to move
on a diagonal.

25



r
|
n - index |

o6

n' - index

7

Figure 14: Location of W(i,j) in 2D mesh diagonal

A

5

S

Where n' is the number of nodes in the diagonal under study, 1 < n' < n; index is
the position of W(i,j) in the diagonal under study, 1 < index < n’; and SS is the
value of the step size.
Proof: We consider increasing diagonal for the proof; however, the same proof
applies to decreasing diagonal. In this type, we follow the same steps as in Type 5.
However, in Type 6, we focus on the communication between the row nodes and
the diagonal nodes.
In this type, as shown in Figure 14, switch W(i,j) belongs to a 2D mesh diagonal
with n’ nodes at position index. We have (index - 1) diagonal nodes before node
W(i,j) and (n’ - index) diagonal nodes after W(i,j). Also, there are (n — index) on the
same row as W(i,j) before node W(i,j).
For this type, under up traffic, each of the row nodes belonging to the (n’ - index)
diagonal nodes after W(i,j) send packets to the (index - 1) diagonal nodes before
node W(i,j). For each of the diagonal nodes X(k,m) at position index" after W(i,j), if
X(k,m) communication with the (index - 1) nodes before W(i,j) passes through
W(i,}), then the row nodes belonging to the same row as the given node shall pass
W(i,j) as well i.e. (n — index) nodes. Hence, the overall count for each of X(k,m)
in case it passes through W(i,j) is (index - 1) * (n — index") packets.

|

In order to illustrate the Count calculations, in Figure 13, we show the up traffic

passing through switch Csqig(i = 3, n = 7, n’ = 6) i.e. traffic from row nodes before
(Csolid; Dsolig; Esolid) 10 (Asoiids Bsotig) using step size of two. Table 5 lists all the
communication from (Csolid, Dsolid, Esolig) rows to (Asolid, Bsoiia) and whether the packets
to (Asolid, Bsotig) Will pass switch Csgjig Or not.

26



Table 5: Up traffic passing through switch Csgjig

Source — Destination

Pass W(i,j) or Not

Cosotia—row = Asolia Pass
Csotid—row — Bsoia Pass
Dsotia—row = Asolig X
Dsotia—row = Bsoiig X
Esotid—row = Asolia Pass
Esotid—row = Bsolia Pass

Table 6: Type 6(a) Count calculation for the solid diagonal switches under up
traffic using different SS values

index SS=2 SS=3
1 0 0
2 (5+3) (5+2)
3 (4+2)+(4+2) 4) + 4)
4 B+ +@B) B+ +B)
5 (2)+(2)+(2)+(2) (2)+(2)+(2) +(2)

Table 7: Type 6(a) Count calculation for the dotted diagonal switches under up
traffic using different SS values

index SS=2 SS=3
1 0 0
2 (3+1) (3)
3 (2)+(2) (2)+(2)
451 L+ (é) + (1) 1+ ((1)) + (1)

Table 5 states that twelve packets pass switch Csjig under up traffic (Count =4 + 4
+ 2 + 2 = 12). Also, applying the Count equation, the number of packets passing
through switch Csgjig is twelve (Count=(3-1)*((7-3)*1+(7—-4)*0+(7-5) * 1)
=2* (4 + 0+ 2) =12) which matches to the value deduced from Table 5.

We show the Count values for the solid and dotted diagonal switches under up
traffic using different step sizes in Table 6 and Table 7 respectively.

3.2.6.2. Type6 (b)

Description: Packets passing through switch W(i,j) as a result of row nodes
communicating with nodes with higher index on increasing diagonal i.e. down
traffic.

index . _
Count: (n'-index) ZQ x (L— [(lndex SxS) modSS })
x=1

27



Table 8: Down traffic communication passing through switch Dpoteq

Source — Destination

Pass W(i,j) or Not

ADotted ~Row E Dotted Pass
BDotted ~Row E Dotted X
C Dotted —Row ™ E Dotted X
DDotted —Row E Dotted Pass

Table 9: Type 6(b) Count calculation for the dotted diagonal switches under down
traffic using different SS values

index SS=2 SS=3
1 2)+(@2)+(2)+(2) (2)+(2)+(2) +(2)
2 B+ +@B) B+ +@3)
3 2+4)+(2+4) 4) + 4)
4 (3+5) (2 +5)
5 0 0

Table 10: Type 6(b) Count calculation for the solid diagonal switches under down
traffic using different SS values

index SS=2 sS=3
1 0 0
2 O+@®+@Q) O+ +@1)
3 (2)+(2) (2)+ ()
4 (1+3) 3)
5 0 0

If diagonal is above main diagonal i.e. n+1— j >i

Q=x-1+n-n'
Else

Q=x-1

Where n' is the number of nodes in the diagonal under study, 1 < n' < n; index is
the position of W(i,j) in the diagonal under study, 1 < index < n'; and SS is the
value of the step size.
Proof: The proof for this type is similar to the proof of Type 6(a).

In order to illustrate the Count calculations, in Figure 13, we show the down traffic
passing through switch Dpoteq(i = 4, n = 7, n’ = 5) i.e. traffic from row nodes before
(Apotted, Bpotteds Cpotteds Dpotted) t0 Epotted USING Step size of three. Table 8 lists all the
communication from (Apotted, Bpotteds Cpotteds Dpotted) FTOWS 10 Epotteq @nd Whether the
packets to Epotieq Will pass switch Dpotteq OF NOL.

Table 8 states that seven packets pass switch Dpoteq Under down traffic (Count = 2
+ 5 = 7). Also, applying the Count equation, the number of packets passing through
switch Dpotteq IS twelve (Count=(5-4)*(2*1+3*0+4*0+5*1)=1*(2+5) =
7) which matches to the value deduced from Table 8.

28




We show the Count values for the dotted and solid diagonal switches under up
traffic using different step sizes in Table 9 and Table 10 respectively.

3.2.6.3. Typeb6 (c)

Description: Packets passing through switch W(i,j) as a result of row nodes
communicating with nodes with lower index on decreasing diagonal i.e. up traffic.*

Count: (index—1) i Qx (1_[(X —index)modSS w)

x=index SS
If diagonal is above main diagonal i.e. j>i
Q=n-x
Else
Q=n'-x

Where n' is the number of nodes in the diagonal under study, 1 < n' < n; index is
the position of W(i,j) in the diagonal under study, 1 < index < n’; and SS is the
value of the step size.

Proof: The proof for this type is similar to the proof of Type 6(a).

3.2.6.4. Type6 (d)

Description: Packets passing through switch W(i,j) as a result of row nodes
communicating with nodes with higher index on decreasing diagonal i.e. down
traffic.

index - _
Count: (n'-index) ZQ x(1- [ (index SXS) modSS "l)
x=1

If diagonal is below main diagonal i.e. j<i

Q=x-1+n-n'
Else

Q=x-1

Where n' is the number of nodes in the diagonal under study, 1 < n' < n; index is
the position of W(i,j) in the diagonal under study, 1 < index < n'; and SS is the
value of the step size.
Proof: The proof for this type is similar to the proof of Type 6(a).

3.2.7. Type 7 Packets

Description: Packets passing through W(i,j) as a result of communication destined
to nodes on the same diagonal as node W(i,j) from nodes with AX < AY (i.e. leads
to moving on a column first).’

* Types 6(c) and 6(d) are same as 6(a) and 6(b) but for decreasing diagonals.
> Type 7 is similar to Type 6 but for column nodes instead of row nodes.

29



N
v
h
P

W
><
ANYA
7N

I_l
- :’“\\

/
AN
d
&H\
NI
.
P

[
T

L

.

—

SN

T T T
LY e /1 }/ \H/ \H/ ™
NN AN AN AN AN

Figure 15: Type 7 example for an increasing diagonal under both up and down
traffics

Figure 15 shows an example for the up and down traffic on increasing diagonal
under traffic Type 7. We divide the discussion of Type 7 into four separate sub-types to
ease the calculation for each of them. The sub-types are listed in the following sub-
sections.

3.2.7.1. Type7(a)

Description: Packets passing through switch W(i,j) as a result of column nodes
communicating with nodes with lower index on increasing diagonal i.e. up traffic.

Count: (index—1) i Qx(l_[(x—index)modss"l)

x=index SS
If diagonal is above main diagonal i.e. n+1— j >i
Q=n-x
Else
Q=n-x

Where n' is the number of nodes in the diagonal under study, 1 < n' < n; index is
the position of W(i,j) in the diagonal under study, 1 < index < n’; and SS is the
value of the step size.

Proof: The proof for this type is similar to the proof of Type 6(a).

3.2.7.2. TypeT7 (b)

Description: Packets passing through switch W(i,j) as a result of column nodes
communicating with nodes with higher index on increasing diagonal i.e. down
traffic.

index - _
Count: (n-index) > Qx (1 [ (index ng modSS —l)
x=1

30



If diagonal is below main diagonal i.e. n+1— j <i

Q=x-1+n-n'
Else

Q=x-1

Where n' is the number of nodes in the diagonal under study, 1 < n’ < n; index is
the position of W(i,j) in the diagonal under study, 1 < index < n’; and SS is the
value of the step size.
Proof: The proof for this type is similar to the proof of Type 6(a).

3.2.7.3. Type7(c)

Description: Packets passing through switch W(i,j) as a result of column nodes
communicating with nodes with lower index on decreasing diagonal i.e. up traffic.

Count: (index—1) i Qx(l_[(x—index)modss'l)

x=index SS
If is diagonal below main diagonal i.e. j<i
Q=n-x
Else
Q=n'-x

Where n' is the number of nodes in the diagonal under study, 1 < n' < n; index is
the position of W(i,j) in the diagonal under study, 1 < index < n'; and SS is the
value of the step size.

Proof: The proof for this type is similar to the proof of Type 6(a).

3.2.7.4. Type7(d)

Description: Packets passing through switch W(i,j) as a result of column nodes
communicating with nodes with higher index on decreasing diagonal i.e. down
traffic.

index - _
Count: (n'—index) ZQ x (L— [ (index st) modSS ‘l)
x=1

If diagonal is above main diagonal i.e. j>i

Q=x-1+n-n'
Else

Q=x-1

Where n' is the number of nodes in the diagonal under study, 1 < n' < n; index is
the position of W(i,j) in the diagonal under study, 1 < index < n'; and SS is the
value of the step size.
Proof: The proof for this type is similar to the proof of Type 6(a).

3.2.8. Type 8 Packets

Description: Packets passing through W(i,j) as a result of communication between
nodes on a diagonal other than node W(i,j) diagonal.®’

® Types 8, 9, 10, 11 & 12 are concerned by the effect of adjacent nodes (row, column, diagonal)
communication on other nodes.

31



\/\ /\/\/
/\/H\/\/ \)

NN /L\ Y
—{ —

\l/ \_ / \1/ \/

ah / / /(129;

\ . & \\‘L 1

Ve \ / \ TN N

— - — )
\/H\ NN / N {?1?’ N

T I T
\ \ AN e +
\J \ ¢ /_ | (105) j—"/ \— \J
SN/ \I/ \T T \T/ \_I/
N TN T e O O\ /\

BN / \ / \[/_-\(%fﬁ\f H \/Y
D ,c\/\ »—(87) /L/\/\\I—H‘/\‘\
en ) e e o 70 A L

1 L S & A T
\H‘/ /\ s \ 4 N N /
VAN

oYe

\

/
\

)
VAN,
/l\
'_\ S/
[
'_,/ \l
. /l
[

7N
=

[

N

[

L L
N N

YR
ANWANYA

N Y
\__/ \__/

\
[

H\.
. / N

e
AN
A

VA,
L
-

Y,
T
/h\ /’ k Y, k_/

[
I

\
/
\

S
AR Y
NN
1
N
LT

\
VERVER TR

\/
/\/\
\/\ /\
\l/\/ N
YavYavYeaw
\/\/ S
Y vaVWaw

.

{

1

NN
H\/

/\/T
|_|
|
(Fo
/\/

J ANGVAN

A

~
/

~
2N
~N

\/\

Ve
\
/
\I

-

J \k
AN
~

N /7
VAN
[

N
1

G;

/
N
N
N
L

/
\

~
/
N
o/

N N N

NP

l

\/‘\
\
/
e
\

-

l/-

—

H — H )
S \U/ N N

[
1

_L
N

N
T
(/\‘/

BN
, - ‘ ./
\I/‘ \T/ \I/ ] \l/ \l/ \l/ \1 L
Y T e e W e Wean W
\/\/\7,,’\\/\J\/\/\/\/\/\

_\ p
/’F\

Figure 16: Type 8 example for an increasing diagonal in a 12x12 mesh

In this type, we start with an illustrating example instead of the order followed in
the previous sections of the analysis. From the example, we deduce the general
relations for this type.

In order to understand the effect and the behavior of some communicating nodes
on other switches and depending on the MaxFlex selection function default behavior
(i.e. move on X then Y), we check AX between the switch under study and the node
originating the traffic.

In Figure 16, Consider switch A(indexpiqgonar = 4, indexgey, =1, n =12, n' =
10) and the switches on the left of it, where n' is the number of nodes in the diagonal
originating traffic, 1 <n’ <n,; indexpizgonq IS the position of W(i,j) row in the
diagonal originating traffic, 1 < indexpiqgona < 1'; indexg,,, is the distance (number
of steps in X-dimension) from switch W(i,j) to the diagonal originating traffic; and SS is
the value of the step size. From Figure 16, we list the (AX ,AY) for the nodes
originating the traffic that affect the switch under study (switch A + switches on the
left) under down traffic in tables 11, 13, 14, and 15. Each of these tables is divided into

” The next analysis is the same for increasing and decreasing diagonals. Also, it is the same for up and
down traffic in the number of reached nodes formula.

32



Table 11: Down traffic passing through switch A

indexg,,y = 1 (Switch A)

SS=1 SS=2 SS=3 SS=4

All | (1,0) [ Right | AIl | (1,0) | Right | AIl | (1,0) | Right | AIl | (1,0) | Right

All | (2,1) | Right| All [(21)| Up | One |(21)| Up | One | (2,1) | Up

All | (3.2) | Right | All | (3,2) | Right | Al | (3.2) | Up | One | (3.2) | Up

All | (43) | Right | All | (43) | Up | All | (43) | Right | All | (4,3) | Up

All | (54) [Right | All | (54) |Right | One | (54) | Up | AIl | (54) | Right

Table 12: Summary for the data collected in Table 11

indexgoyw =1
AX 8mod SS Number of Nodes Reached
0 All
1 All
2 One
3 One
>3 One

Table 13: Down traffic passing through switch B

indexgoy = 2 (Switch B)
SS=2 SS=3 SS=4
All (2,0) | Right All (2,0) | Right All (2,0) | Right
X (3,1) X All (3,1) Up One (3,1) Up
All (4,2) | Right X (4,2) X All (4,2) Up
X (5,3) X All (5,3) | Right X (5,3) X
All (6,4) | Right All (6,4) Up All (6,4) | Right

a group of columns for each step size value. Each group lists (AX ,AY ) values for all
the originating nodes, how many diagonal nodes reached, and the port used to reach
these nodes.

From Table 11, we summarize the collected data based on AX mod SS. The
summary lists all the values for AX mod SS and whether any diagonal nodes are
reached or not. In case of reaching diagonal nodes, Table 12 lists the number of the
reached nodes.

From Table 12, we notice that if the AX mod SS is zero or one, then all of the
intended diagonal nodes can be reached. However, if AX mod SS is greater than one,
only one diagonal node can be reached. The following relations summarize out
findings.

& We monitored AX value due to MaxFlex selection function default behavior i.e. move on X then Y.

33



Table 14: Down traffic passing through switch C

indexg,,, =3 (Switch C)
SS=3 SS=4
All (3,0) Right All (3,0) Right
X (4,1) X All (4,1) Up
X (5,2) X X (5,2) X
All (6,3) Right x (6,3) x
X (7,4) X All (7,4) Right

Table 15: Down traffic passing through switch D

indexgoy = 4 (Switch D)
SS=4
All (4,0) Right
X (5,1) X
X (6,2) X
X (7,3) X
All (8,4) Right

AX mod SS e (0,1) then All°
AX mod SS > 1 then One®

From Table 13 and in a similar manner to what was done in Table 11, we notice
that if the AX mod SS is zero or two, then all of the intended diagonal nodes can be
reached. Also, if AX mod SS equals one, then none of the diagonal nodes can be
reached. Finally, if AX mod SS is greater than two, only one diagonal node can be
reached. The following relations summarize out findings.

AX mod SS e (0,2) then All*
AX mod SS = 1 then x (Zero)
AX mod SS > 2 then One

Similarly, in Table 14 and Table 15, we summarize our findings concerning AX
mod SS and the number of diagonal nodes reached in the relations following each table.
From Table 14, we notice the following relations.

AX mod SS e (0,3) then All*2
AX mod SS € (1,2) then x (Zero)
AX mod SS > 3 then One

From Table 15, we notice the following relations.

° Reach all nodes below or on same row as the switch under study (in this case 5 nodes)

1% Reach the node on the same column only

! Reach all nodes below or on the same row as the switch under study (in this case 4 nodes)
*? Reach all nodes below or on the same row as the switch under study (in this case 3 nodes)

34



Procedure Count
Inputs: i, j, SS, X, Xast
Outputs: Count

Count=0
fori=1lton'
forj=1t0 SS

forindex=iton'
if (4XmodSS) € (0,])
Count += (i —j)
else if (4X mod SS > j)
Count+=1

Figure 17: Procedure for counting the packets passing through a switch for Type
8(a)

AX mod SS e (0,4) then AlI*3
AX mod SS € (1,2,3) then x (Zero)
AX mod SS > 4 then One

In order to generalize for indexg,,,, We consider all the relations deduced for each
indexg,,, value discussed in the previous tables. From these tables and the deduced
relations, in Table 16, we calculate the number of reached diagonal nodes under up and
down traffic. Also, we calculate the X and Y index of the switch under study i.e. the
switch we calculate the number of passing packets for.

Additionally, we generalize the relations for indexg,,, under up and down traffic.

AX mod SS e (0, indexg,,,) then All
AX mod SS € (1,2 ... indexg,,-1) then x (Zero)
AX mod SS > indexg,,, then One

For Type 8, we represent the formulas in form of pseudo code not an equation for
easier analysis and explanation. We present pseudo code for up traffic and other for
down traffic in the following sub-sections.

3.28.1. Type8(a)

Description: Packets passing through W(i,j) as a result of up traffic communication
between nodes on a diagonal other than node W(i,j) diagonal. This sub-type studies
the effect of Type 5 under up traffic on the switches adjacent to a given diagonal.
Count: To calculate the number of packets passing through a switch under up
traffic, we use the pseudo code in Figure 17.

Y Reach all nodes below or on the same row as the switch under study (in this case 2 nodes)

35



Procedure Count
Inputs: i, j, SS, Xre, Xust
Outputs: Count

Count=0
fori=1lton'
forj=1to SS

forindex=1toi
if (4Xmod SS) € (0,))
Count+=(n'—i—j+1)
else if (41X mod SS > j)
Count +=1

Figure 18: Procedure for counting the packets passing through a switch for Type
8(b)

3.2.8.2. Type8 (b)

Description: Packets passing through W(i,j)) as a result of down traffic
communication between nodes on a diagonal other than node W(i,j) diagonal. This
sub-type studies the effect of Type 5 under down traffic on the switches adjacent to
a given diagonal.

Count: To calculate the number of packets passing through a switch under down
traffic, we use the pseudo code in Figure 18.

3.2.9. Type 9 Packets

Description: Packets passing through W(i,j) as a result of communication destined
to nodes on a diagonal other than node W(i,j) diagonal from nodes with AX > AY
14

Similar to what was done in Type 8, for Type 9; we represent the formulas in form
of pseudo code for up traffic and down traffic in the following sub-sections.

3.29.1. Type9(ac)

Description: Packets passing through W(i,j) as a result of up traffic communication
destined to nodes on a diagonal other than node W(i,j) diagonal from nodes with
AX > AY . This sub-type studies the effect of sub-type 6(a) and sub-type 6(b) on
the switches adjacent to a given diagonal.

Count: To calculate the number of packets passing through a switch under up
traffic, we use the pseudo code in Figure 19.

* Type 9 and Type 10 analysis is the same as Type 8.

36



Procedure Count
Inputs: i, j, SS, Xgre, Xast
Outputs: Count

Count=0
fori=1lton'
forj=1t0 SS

forindex=iton’
if (4Xmod SS) € (0,))
Count += (i — j) * Multiplier
else if (4X'mod SS > j)
Count += Multiplier

Figure 19: Procedure for counting the packets passing through a switch for Type
9(a, c)

Where for increasing diagonal
If diagonal is below main diagonal i.e. n+1—Node, < Node,
Multiplier=n—index
Else
Multiplier=n'-index
And for decreasing diagonal
If diagonal is above main diagonal i.e. Node, > Node,
Multiplier=n—index
Else
Multiplier=n'-index
Where n' is the number of nodes in the diagonal originating traffic, 1 < n' < n;
Node, is the X index of the node belonging to both the diagonal originating the
traffic and W(i,j) row; and Node,, is the Y index of the node belonging to both the
diagonal originating the traffic and W(i,j) row.
Proof: The proof for this type is similar to the proof of Type 8.

3.29.2. Type9 (b, d)

Description: Packets passing through W(i,j) as a result of down traffic
communication destined to nodes on a diagonal other than node W(i,j) diagonal
from nodes with AX > AY . This sub-type studies the effect of sub-type 6(b) and
sub-type 6(d) on the switches adjacent to a given diagonal.

Count: To calculate the number of packets passing through a switch under down
traffic, we use the pseudo code in Figure 20.

37



Procedure Count
Inputs: i, j, SS, Xere, Xast
Outputs: Count

Count=0
fori=1lton'
forj=1t0SS

forindex=1toi
if (4XmodSS) € (0,))
Count +=(n'—i—j + 1) * Multiplier
else if (4X mod SS > j)
Count += Multiplier

Figure 20: Procedure for counting the packets passing through a switch for Type
9(b, d)

Where for increasing diagonal
If diagonal is above main diagonal i.e. n+1— Node, > Node,
Multiplier=index—1+n-n'
Else
Multiplier=index—1
And for decreasing diagonal
If diagonal is below main diagonal i.e. Node, < Node,
Multiplier=index—1+n-n'
Else
Multiplier=index—1
Where n' is the number of nodes in the diagonal originating traffic, 1 < n' < n;
Node, is the X index of the node belonging to both the diagonal originating the
traffic and W(i,j) row; and Node,, is the Y index of the node belonging to both the
diagonal originating the traffic and W(i,j) row.
Proof: The proof for this type is similar to the proof of Type 8.

3.2.10. Type 10 Packets

Description: Packets passing through W(i,j) as a result of communication destined
to nodes on a diagonal other than node W(i,j) diagonal with from nodes with
AX < AY .

Similar to what was done in Type 8 and Type 9, for Type 10; we represent the
formulas in form of pseudo code for up traffic and down traffic in the following sub-
sections.

3.2.10.1. Type 10 (a, ¢)

Description: Packets passing through W(i,j) as a result of up traffic communication
destined to nodes on a diagonal other than node W(i,j) diagonal with from nodes
with AX < AY . This sub-type studies the effect of sub-type 7(a) and sub-type 7(c)
on the switches adjacent to a given diagonal.

38



Procedure Count
Inputs: i, j, SS, Xgre, Xast
Outputs: Count

Count=0
fori=1ton'
forj=1t0SS

forindex=iton'
if (4Xmod SS) € (0, ])
Count += (i — j) * Multiplier
else if (4X mod SS > j)
Count += Multiplier

Figure 21: Procedure for counting the packets passing through a switch for Type
10(a, ¢)

Count: To calculate the number of packets passing through a switch under up
traffic, we use the pseudo code in Figure 21.

Where for increasing diagonal
If diagonal is above main diagonal i.e. n+1— Node, > Node,
Multiplier=n—index
Else
Multiplier=n'-index
And for decreasing diagonal
If diagonal is below main diagonal i.e. Node, < Node,
Multiplier=n—index
Else
Multiplier=n'-index
Where n’ is the number of nodes in the diagonal originating traffic, 1 < n' < n;
Node, is the X index of the node belonging to both the diagonal originating the
traffic and W(i,j) row; and Node,, is the Y index of the node belonging to both the

diagonal originating the traffic and W(i,j) row.
Proof: The proof for this type is similar to the proof of Type 8.

3.2.10.2. Type 10 (b, d)

Description: Packets passing through W(i,j) as a result of down traffic
communication destined to nodes on a diagonal other than node W(i,j) diagonal
with from nodes with AX < AY . This sub-type studies the effect of sub-type 7(b)
and sub-type 7(d) on the switches adjacent to a given diagonal.

Count: To calculate the number of packets passing through a switch under down
traffic, we use the pseudo code in Figure 22.

39



Procedure Count
Inputs: i, j, SS, Xere, Xast
Outputs: Count

Count=0
fori=1lton'
forj=1t0SS

forindex=1toi
if (4Xmod SS) € (0,))
Count +=(n'—i —j + 1) * Multiplier
else if (4X mod SS > j)
Count += Multiplier

Figure 22: Procedure for counting the packets passing through a switch for Type
10(b, d)

Where for increasing diagonal
If diagonal is below main diagonal i.e. n+1—Node, < Node,
Multiplier=index—1+n—n'
Else
Multiplier=index—1
And for decreasing diagonal
If diagonal is above main diagonal i.e. Node, > Node,
Multiplier=index—1+n-n'
Else
Multiplier=index—1
Where n' is the number of nodes in the diagonal originating traffic, 1 < n' < n;
Node, is the X index of the node belonging to both the diagonal originating the
traffic and W(i,j) row; and Node,, is the Y index of the node belonging to both the
diagonal originating the traffic and W(i,j) row.
Proof: The proof for this type is similar to the proof of Type 8.

3.2.11. Type 11 Packets

Description: Packets passing through W(i,j) as a result of communication between
node (i,k) from same row as node W(i,j) and nodes on node (i,m) diagonal where 1
<k,m<nandj = k= m.

We divide the discussion of Type 11 into four separate sub-types to ease the
calculation for each of them. The sub-types are listed in the following sub-sections.

3.2.11.1. Type 11 (a)

Description: Packets passing through switch W(i,j) as a result of same row nodes
communicating with nodes with lower index on increasing diagonal i.e. up traffic.

Count: (index,, —1)(INdeX,,go0 —1
Where n’ is the number of nodes in the diagonal originating traffic, 1 < n' < n;
indexpiggona 1S the position of switch W(i,j) row in the destination diagonal,

40



<index'- 19

Figure 23: Location of W(i,j) in 2D mesh

1 < indexpiggonm < M'; and indexg,, is the position of W(ij) in the row
originating traffic, 1 < indexg,,, < L.
If diagonal is below main diagonal i.e. n+1— Node, < Node,

L=n- inde)ﬁ)iagonal
Else

L= n'_inde)%iagonal
Where Node, is the X index of the node belonging to both the destination diagonal
and W(i,j) row; and Node,, is the Y index of the node belonging to both the
destination diagonal and W(i,j) row.
Proof: We consider increasing diagonal for the proof; however, the same proof
applies to decreasing diagonal. In this type, we follow the same steps as in Type 6.
However, in Type 11, we focus on the effect of the same row nodes
communication with the diagonal nodes.
In this type, as shown in Figure 23, switch X(k,m) belongs to a 2D mesh diagonal
with n’ nodes at position indexp;qgonq (denoted index in Figure 23). We have
(indexpiqgona — 1) diagonal nodes before node X(k,m) and (n" — indexpiggonar)
diagonal nodes after X(k,m). Also, there are (n — indexp;ggonq:) ON the same row
as X(k,m) before node X(k,m). Let switch W(i,j) belongs to one of these (n —
indexpiqgona1) NOdes at position indexg,,, (denoted index’ in Figure 23) with
(indexg,w — 1) nodes before it on the same row.
For this type, under up traffic, each of the (n — indexp;qg0nq1) NOdes belonging to
the same row as X(k,m) send packets to the (index - 1) diagonal nodes before node
X(k,m). Since W(i,j) is one of these nodes, then each of the packets sent by the

(indexg,,, — 1) before W(i,j) in the same row passes through W(i,j). Since each
node sends only one packet to each of the NoC nodes (check the assumptions), the

41



Figure 24: Type 11 example for an increasing diagonal under both up and down
traffics

Table 16: Up traffic passing through switch Zsgjig

Source — Destination Pass W(i,j) or Not
Xsolid — A Pass
Ysolia — A Pass

overall count for the packets passing through W(i,j) is (indexgy, —1) *
(indexpiqgonar — 1) packets.
|

In order to illustrate the Count calculations, in Figure 24, we show the up traffic
from the nodes on the same row as switch Zsqjig(indexpiggonar = 2, indexgyy, =3, n =
5, n' =5) i.e. traffic from (Xsoiig, Ysoiig) t0 A. Table 17 lists all the communication from
(Xsolid, Ysolig) to A and whether the packets to A will pass switch Zgeig Or not.

Table 17 states that two packets pass switch Zsqig under up traffic (Count = 2).
Also, applying the Count equation, the number of packets passing through switch Zsgjig
is two (Count=(3-1) * (2-1) =2 * 1 = 2) which matches to the value deduced from
Table 17.

3.2.11.2. Type 11 (b)

Description: Packets passing through switch W(i,j) as a result of same row nodes
communicating with nodes with higher index on increasing diagonal i.e. down
traffic.

Count: (indexg, —1)(N"—iNdeX5i000a1)

Where n' is the number of nodes in the diagonal originating traffic, 1 < n' < n;
indexpiggona 1S the position of switch W(i,j) row in the destination diagonal,

42




1 <indexpiggonm < n'; and indexg,, is the position of W(ij) in the row
originating traffic, 1 < indexg,,, < L.
If diagonal is above main diagonal i.e. n+1— Node, > Node,

L = indeXy 400y —1+N—1'
Else

L= inde)ﬂ)iagonal -1

Where Node, is the X index of the node belonging to both the destination diagonal
and W(i,j) row; and Node, is the Y index of the node belonging to both the

destination diagonal and W(i,j) row.
Proof: The proof for this type is similar to the proof of Type 11(a).

3.2.11.3. Type 11 (c)

Description: Packets passing through switch W(i,j) as a result of same row nodes
communicating with nodes with lower index on increasing diagonal i.e. up traffic.
Count: (index,, —1)(INdeX,,gom —1
Where n’ is the number of nodes in the diagonal originating traffic, 1 < n' < n;
indexpiqgona 1S the position of switch W(i,j) row in the destination diagonal,
1 <indexpiggonm < M'; and indexg,, is the position of W(ij) in the row
originating traffic, 1 < indexg,,, < L.
If diagonal is above main diagonal i.e. Node, > Node,

L=n- inde)ﬁ)iagonal
Else

L= n'_inde)%iagonal
Where Node, is the X index of the node belonging to both the destination diagonal
and W(i,j) row; and Node, is the Y index of the node belonging to both the

destination diagonal and W(i,j) row.
Proof: The proof for this type is similar to the proof of Type 11(a).

3.2.11.4. Type 11 (d)

Description: Packets passing through switch W(i,j) as a result of same row nodes
communicating with nodes with higher index on decreasing diagonal i.e. down
traffic.

Count: (indexg, —1)(N'—iNdeX5i000a1)
Where n' is the number of nodes in the diagonal originating traffic, 1 < n' < n;
indexpiggona 1S the position of switch W(i,j) row in the destination diagonal,
1 <indexpiggonm <M'; and indexg,, is the position of W(ij) in the row
originating traffic, 1 < indexg,,, < L.
If diagonal is below main diagonal i.e. Node, < Node,

L = indeXy 400 —1+N—1'
Else

L = indeX;igon —1

43



Where Node,, is the X index of the node belonging to both the destination diagonal
and W(i,j) row; and Node, is the Y index of the node belonging to both the
destination diagonal and W(i,j) row.

Proof: The proof for this type is similar to the proof of Type 11(a).

3.2.12. Type 12 Packets

Description: Packets passing through W(i,j) as a result of communication between
node (k,j) from same column as node W(i,j) and nodes on node (m,j) diagonal
wherel < k,m<nandi = k = m.

We divide the discussion of Type 12 into four separate sub-types to ease the
calculation for each of them. The sub-types are listed in the following sub-sections.

3.2.12.1. Type 12 (a)

Description: Packets passing through switch W(i,j) as a result of same column
nodes communicating with nodes with lower index on increasing diagonal i.e. up
traffic.

M (inde)%olumn _1)(inde)%iagonal _1)
Where n' is the number of nodes in the diagonal originating traffic, 1 < n' < n;
indexpiggonai 1S the position of switch W(i,j) column in the destination diagonal,
1 < indexpiggonm < M'; and indexcopmn 1S the position of W(i,j) in the column
originating traffic, 1 < indexcouumn < L.
If diagonal is above main diagonal i.e. n+1—Node, > Node,

L=n- inde}ﬁ)iagonal
Else

L= n'_inde)%iagonal
Where Node, is the X index of the node belonging to both the destination diagonal
and W(i,j) column; and Node, is the Y index of the node belonging to both the

destination diagonal and W(i,j) column.
Proof: The proof for this type is similar to the proof of Type 11(a).

44



v

s

Figure 25: Type 12 example for an increasing diagonal under both up and down
traffics

Table 17: Up traffic passing through switch Ysgjig

Source — Destination Pass W(i,j) or Not

Xsolid — A Pass

In order to illustrate the Count calculations, in Figure 25, we study the up traffic
from the nodes on the same column as switch Ysgig(indexpiagona = 2, indexcopmn =
2, n =5, n' =5) i.e. traffic from Xseig to A. Table 18 lists all the communication from
Xsolig t0 A and whether the packets to A will pass switch Yseig Or not.

Table 18 states that only one packet passes switch Ysqig under up traffic (Count =
1). Also, applying the Count equation, the number of packets passing through switch

Ysoiig IS one (Count = (2 - 1) * (2—-1) =1 * 1 = 1) which matches to the value deduced
from Table 18.

3.2.12.2. Type 12 (b)

Description: Packets passing through switch W(i,j) as a result of same column
nodes communication with nodes with higher index on increasing diagonal i.e.
down traffic.

M (index:olumn _1)(n'_inde)%iagonal)

Where n' is the number of nodes in the diagonal originating traffic, 1 < n' < n;
indexpiggona: 1S the position of switch W(i,j) column in the destination diagonal,
1 < indexpiggonm < M'; and indexcopmn is the position of W(i,j) in the column
originating traffic, 1 < indexcoiumn < L.

If diagonal is below main diagonal i.e. n+1— Node, < Node,

L = indeXy 400 —1+N—1'

45




Else

L= indeX)iagonal -1
Where Node, is the X index of the node belonging to both the destination diagonal
and W(i,j) column; and Node, is the Y index of the node belonging to both the

destination diagonal and W(i,j) column.
Proof: The proof for this type is similar to the proof of Type 11(a).

3.2.12.3. Type 12 (c)

Description: Packets passing through switch W(i,j) as a result of same column
nodes communication with nodes with lower index on decreasing diagonal i.e. up
traffic.

M (inde)%olumn _1)(inde)%iagonal _1)
Where n' is the number of nodes in the diagonal originating traffic, 1 < n' < n;
indexpiqgona: 1S the position of switch W(i,j) column in the destination diagonal,
1 < indexpiggonm < M'; and indexcopmn 1S the position of W(i,j) in the column
originating traffic, 1 < indexcopumn < L.
If diagonal is below main diagonal i.e. Node, < Node,

L=n- inde)ﬂ)iagonal
Else

L= r-"_inde)ﬂ)iagonal
Where Node, is the X index of the node belonging to both the destination diagonal
and W(i,j) column; and Node, is the Y index of the node belonging to both the

destination diagonal and W(i,j) column.
Proof: The proof for this type is similar to the proof of Type 11(a).

3.2.12.4. Type 12 (d)

Description: Packets passing through switch W(i,j) as result of same column nodes
communication with nodes with higher index in decreasing diagonal i.e. down
traffic.

M (index:olumn _1)(n'_inde)%iagonal)

Where n' is the number of nodes in the diagonal originating traffic, 1 < n' < n;
indexpiqgona: 1S the position of switch W(i,j) column in the destination diagonal,
1 < indexpiggonm < M'; and indexcopmn is the position of W(i,j) in the column
originating traffic, 1 < indexcopumn < L.

If diagonal is above main diagonal i.e. Node, > Node,

L = indeXy 400 —1+N—1'
Else
L= inde)ﬂ)iagonal -1

Where Node,, is the X index of the node belonging to both the destination diagonal
and W(i,j) column; and Node, is the Y index of the node belonging to both the
destination diagonal and W(i,j) column.

Proof: The proof for this type is similar to the proof of Type 11(a).

46



Table 18: Formulas for different traffic types

Type Formula
Ejection
1 n*-1
Injection
2 n’ -1
Row
3 2(index—1)(n — index)
4 Column
2(index—21)(n —index)
Up Traffic
(index— 1) "ndex
. SS |
5 Down Traffic
. index—1
(n'—index)
L SS |
Up Traffic
(index—1) i Ox (1—[()( —index)mod SSW)
xindex SS
if diagonal below main diagonal
Q=n-x
else
Q=n'-x
6 Down Traffic
(n'—index)lier y (1_[(|ndex— x)modSS —‘)
o SS
if diagonal above main diagonal
Q=x-1+n-n'
else
Q=x-1
Up Traffic
(index—1) i Ox (1—[()( —index)mod SSW)
ximdex SS
if diagonal above main diagonal
Q=n-x
else
Q=n'-x
! Down Traffic
(n—index) fQ (1 [(mdex—sxs) modSS W)
x=1

if diagonal below main diagonal
Q=x-1+n-n'
else

Q=x-1

47




Procedure Count
Inputs: i, j, SS, Xere, Xast
Outputs: Count

fori=1ton'
8,9, 10 forj=1to SS
forindex=AtoB
if (41X mod SS) € (0, j)
Count += (i —J) * Multiplier
else if (4X>])
Count += Multiplier
Up Traffic
(indexg,, — 1) (indeXy,gon —1)
if diagonal below main diagonal
L =n—indeX;igona
else
L = n"-indeX;gona
1 Down Traffic
(indexgy,, —1)(N—indeXy;agon0)
if diagonal above main diagonal
L = indexy;,gon —1+N—1'
else
L = indeXgigoma —1
Up Traffic
(indeXCqumn_l)(inde)ﬂ)iagonal _1)
if diagonal above main diagonal
L =n—indeX;iqona
else
1 L = n"-indeX;igona

Down Traffic
(inde)%olumn _1)(nl_inde)ﬂ3iagonal)
if diagonal below main diagonal
L = indexy;,gon —1+N—1'
else
L = indeXy;goma —1

3.2.13. Summary of Packets Count Calculations®™

In this section, we summarize the number of the packets passing through a switch.
Table 19 shows the number of packets caused by all the types with a step size of SS.
The variables used in Table 19 are described in Table 20.

> The listed equations and pseudo code are for the increasing diagonals only, but the same applies for the
decreasing diagonals.

48




Table 19: Common variables used in Table 19

n Number of row/column nodes -
n' Number of diagonal nodes 1<n'<n
index / index pz4na Index in diagonal 1<index/indeX; o <N
index,, / iNdeX..m Index in row/column 1<indeX,, /indeX.q,m, < L

Table 20: A and B values for up and down traffic

Up Traffic Down Traffic
A i 1
B n i

Table 21: Multiplier value for Type 8, Type 9 and Type 10

Type Up Traffic Down Traffic
8 1 1
if diagonal below main diagonal | if diagonal above main diagonal
9 n—index index—1+n—n'
else else
n'—index index—1
if diagonal above main diagonal | if diagonal below main diagonal
n—index index—1+n—n'
10
else else
n'—index index—1

Table 22: Values for Type 9 up traffic communication

A i
B n'
if diagonal below main diagonal
Multiplier n—index
else
n'—index

For Type 8, Type 9, and Type 10, we devised a pseudo code to calculate the count
instead of using formulas it is more readable that way. Table 19 shows a generic code
for the number of packets passing through a switch W(i,j) for Type 8, Type 9 and Type
10 based on the values in Table 21 and Table 22. For example, Table 23 shows the

values for Type 9 up traffic.

3.3. Proof of Packet Types Completeness

In this section, we prove that any communication between two nodes falls under
one of the mentioned 12 types.

49



Table 23: First category cases

Case # Condition Description
1 AX = AY P moves on thg diagonal from S to D. This case causes
the pattern defined in Type 5.
9 AX =0 P moves on a golurr_ln from S to D. This case causes
the pattern defined in Type 4.
3 AY =0 P moves on arow from S to D. This case causes the
pattern defined in Type 3.
4 AX > AY P moves on a row till AX = AY_ theq follows Case 1.
This case causes the pattern defined in Type 6.
5 AX < AY P moves on a column till AX = A\_( the_n follows Case
1. This case causes the pattern defined in Type 7.
Table 24: Second category cases
Case # | Condition Description
P moves on the diagonal from S to D. The movement on the
6 AX =AY | diagonal leads the packet to pass through switches on nearby

diagonals. This case causes the pattern defined in Type 8.

P moves on a row till AX =AY then follows Case 6. This
case causes two patterns; moving on row causes the pattern

! AX =AY defined in Type 11 and moving on diagonal causes the pattern
defined in Type 9.
P moves on a column till AX =AY then follows Case 6. This
8 AX < Ay | GASE causes two patterns; moving on column causes the

pattern defined in Type 12 and moving on diagonal causes the
pattern defined in Type 10.

Lemma Inan nxn mesh, under MMaxFlex, any packet going from a source node
to a destination node falls under one of the mentioned twelve traffic types.

Proof Here, we differentiate the patterns going through W(i,j) into two main
categories:

1) The patterns due to moving to nodes on same row, column, or diagonal as
W(i.j)

2) The patterns due to moving to nodes on different diagonal than that of
W(i,j) (i.e. the effect on W(i,j) caused by category one)

Concerning the first category, consider the possible values for AX w.rtAY . We
list the cases in Table 24.

Now we consider the second category. Beside the patterns in first category, packets
may pass through a switch as a result of other diagonal communication. This is because
adjacent diagonal affects nodes other than its own nodes as there is no direct link
between diagonal nodes. Thus, moving on diagonal will lead to move right-up or left-
down. The effect differs based on the value of AX w.r.t AY as shown in Table 25.

Beside the two categories, we have two special cases not related to MaxFlex work;
Node W(i,j) injecting to all other nodes (this case causes the pattern defined in Type 2),
and Node W(i,j) receiving from all other nodes (this case causes the pattern defined in
Type 1).

50




=—4— Switch (0,0)
1800 = Switch (0,3)
—4— Switch (0,6)
—4— Switch (3,3) |
—4— Switch (3,6) |

Switch (5,5)

Packet Count
x
[=]
o

5
Step Size

Figure 26: Number of packet passing through sample border and core switches
over different fixed step size values

Thus, the above cases cover the 12 mentioned types proving the lemma.

3.4. Packets Distribution Analysis Results

In this section, we calculate the number of packets passing through each switch in a
10x10 2D mesh network using the count equations presented in Section 3.2 using
different step sizes. We choose some representative switches based on their location in
the network to represent border switches and core switches. We choose Switch (0, 0),
Switch (0, 3) and Switch (0, 6) as border switches and Switch (3, 3), Switch (3, 6),
Switch (5, 5) as core switches.

Figure 26 shows the number of packets passing through each of the mentioned
switches with different step sizes. From the figure, we notice different trends; for the
border nodes, the number of packets passing through the switch increases as the step
size increases, while for the core switches, the number of packets decreases as the step
size increases. In other words, the concentration in the central part of network bisection
is relaxed.

This is because, as the step size increases, the packet moves in one dimension for
more steps before alternating the dimension. This movement enables the packet to
reach farther switches (i.e. switches away from the diagonals) which allows some
relaxation for the core diagonal switches.

3.5. Experimental Setup

In this section, we present the method used to evaluate MMaxFlex. Also, we
present the model of the used bufferless NoC. Finally, we define the performance

51



metrics used to evaluate the proposed approach. In the next section, we evaluate
MMaxFlex selection function using different step sizes in terms of the used
performance metrics. In addition, we calculate an approximate value for the optimal
step size given a certain dimension.

3.5.1. Experimental Methodology

We evaluate the network performance of bufferless NoCs using the General
purpose Simulator gpNoCsim [39]. The simulator is an open-source, component based
simulation framework for NoC architectures that is developed entirely in Java. In
gpNoCsim, we have either a processing node (a message generation or consumption
points) or a switch connected through bidirectional links. Each switch has a router and a
controller. gpNoCsim uses the wormhole switching technique. Processing nodes clock
is synchronized with the switches.

3.5.2. Interconnection Network Model

We use the 2D mesh topology of varying size to model the network. Each switch
has 5 input ports and 5 output ports, including the injection ports. Each of the switch
latency and link latency is 1 cycle. In our configuration, we assume that each link is
128-bit wide and each data packet consists of 8 flits, each of which is assumed to have
128 bits. All packets are of fixed length. For comparing the effect of increasing the step
size, we use a 10x10 mesh. On the other hand, for calculating the optimal step size
given the 2D mesh dimension, we use a mesh size varying from 5x5 to 12x12.

We use synthetic traces to evaluate MaxFlex. Synthetic traces are used for various
sensitivity analyses, as well as for comparing the different step sizes among each other
and with other baseline selection functions. Each switch is associated with a processor
and the destination address of a packet is determined by the statistical process of the
uniform traffic pattern. Within each simulation there is a warm-up period of 100,000
cycles. The simulation terminates when 1000,000 packets are received.

3.5.3. Evaluation Metrics

Our main performance metrics for system performance evaluation are the average
packet latency and the average flit deflection count. Packet latency is calculated as the
time the packet takes to reach the destination (Last Flit Ejection Time — First Flit
Generation Time) including source queuing time. Flit deflection count is the number of
times the flit was forced to go through a non-productive port i.e. misroute.

52



100

—— 581
882
—— 583
901 = 4 =584
sS85
-+ -886
oL 'k 887
$58
ok SS8

Latency (Cycles)

i |[——ss1]

0.19 02 0.21 0.22
Flit Injection Rate (Flit/Cycle/Node) Flit Injection Rate (Flit’Cycle/Node)

0.22 0.23 0.19 0.2 0.21 0.23

Figure 27: Average packet latency for ~ Figure 28: Average deflection count for
different fixed step size values different fixed step size values

Latency (Cycles)

[\
[41]
[=]
o

2000 -

1500

1000

500

6 7 8

i i i i

L
9

5
Step Size

Figure 29: Average packet latency for different fixed step sizes at flit injection rate

= 0.22 flit/cycle/node

3.6. Simulation Results

Here we show the results of increasing the step size under MMaxFlex and the
MaxFlex performance compared with other selection functions. Figure 27 and Figure
28 show that as the step size increases, both the average packet latency and the average
deflection count decreases. These results matches the analysis results in Section 3.4, as
the better traffic distribution showed in the analysis can lead to better link utilization
which can lead to faster delivery for the packets and hence better packet latency and

53



100 371

N .
—4—SS8 3.6 == SS8
—4— Straight : : gi [| =¥ Straight

% =f=— RandomProd 33 == RandomProd

Latency (Cycles)

Average Deflection Count
Adaaaaaaa P

MobhooNwoN=
L s S B B B B B

—kk

I ; i i i
22 0.23 0.19 0.2 0.21 0.23

i i
0.19 02 0.21 0. 0.22
Flit Injection Rate (Flit/Cycle/Node) Flit Injection Rate (Flit’Cycle/Node)

Figure 30: Average packet latency for ~ Figure 31: Average deflection count for
fixed step size of 8 compared with fixed step size of 8 compared with
different selection functions different selection functions

less misrouting due to contention. Figure 29 focuses on the cut-off point of the flit
injection rate of 0.22 flit/cycle/node i.e. the point after which the latency increases
exponentially. The figure shows that for smaller step sizes, the average packet latency
is very high (magnitude of thousands of cycles). While for larger step sizes the average
packet latency is much smaller with the smallest packet latency achieved using step size
of 8. The average packet latency using larger step sizes is almost equal as all these step
size values lead to almost the same packet movements. For example, moving from node
(0, 5) to (5, 10) under step size of 1 leads to moving one step in X then one step in Y till
the destination is reached, while using a step size of 6 will lead to moving 6 steps in X
then 6 steps in Y. Since the number of steps remaining in X is less than 6, the packet
will move as if it uses dimension order routing (DO-XY). The same applies for step
sizes larger than 6.

Now, we compare increasing the step size under MaxFlex with other selection
functions, namely Straight Line selection function and random productive port selection
function. In the Straight Line selection function, the flit favors the X-dimension
movement till there are no steps remaining in X-dimension then moves in Y-dimension.
In the random productive port selection function, the flit randomly chooses from the list
of productive ports available at each step. Figure 30 and Figure 31 show that increasing
the fixed step size under MaxFlex leads to better average packet latency and smaller
deflection count. Specifically, using a fixed step size of 8 enhances the average packet
latency by around 95% and 99% over using Straight Line selection function and
random productive port selection function respectively. Also, the average deflection
count decreases by 38% and 53% compared with Straight Line selection function and
random productive port selection function respectively.

54



Table 25: Step size to mesh dimension percentage

Mesh Size Best Step Size | Percentage
5x5 4 80
6X6 4 66.67
x7 5 71.43
8x8 6 75
9x9 6 66.67
10x10 8 80
11x11 8 72.73
12x12 9 75

3.7. Estimation of the Value of the Step Size

In this section, given an nxn mesh, we estimate the value of the step size. In order
to do this, we simulated the MaxFlex under different 2D mesh sizes varying from 5x5
to 12x12 and within each network we used step sizes ranging from 1 to n — 1. For
example, for 7x7 mesh network, we used step sizes ranging from 1 to 6. The results are
shown in the Table 26. Column 1 represents the mesh size, column 2 represents the best
step size achieved, and column 3 represents the percentage of the step size to the
dimension of the mesh.

Table 26 shows that using a step size with a value ranging from 60% to 80% of the
2D mesh dimension leads to better network performance. Based on the fixed step size
analysis and simulation results, we conclude that using a larger value for the step size
leads to better network performance. This is due to the better distribution of traffic
among the network switches.

3.8. Concluding Remarks

In this chapter, we presented the idea of increasing the used step size under
MaxFlex selection function. We started by analyzing the uniform traffic distribution
under MaxFlex. We found that the traffic is divided into 12 different types. We studied
how increasing the used fixed step size value can affect the overall traffic distribution
among the NoC switches and links. Our analysis showed that increasing the step size
helps in relaxing the traffic load on the NoC bisection. To back up our analysis, we
simulated a 10x10 mesh under different step sizes and other selection functions. Our
results showed that increasing the step size can lead to an enhancement of 95% and
38% in both average packet latency and average deflection count respectively.
Additionally, we simulated 2D meshes of different sizes to get estimation for the value
of the step size given only the mesh dimension. We found that using 60-80% of the
mesh dimension leads to better performance in terms of both packet latency and
deflection count.

55



Chapter 4 : Variable Step Size Maximum Flexibility
Selection Function

In Chapter 3, we showed that the value of the step size greatly affect the overall
performance of the bufferless 2D NoC. As a result, we proposed MMaxFlex selection
function. MMaxFlex uses step size values greater than one for all the packets in order
to push the traffic to the NoC borders as a way to increase the links utilization. Also, we
proposed estimation for the appropriate step size. However, the selection of the step
size is done at the compilation time. In other words, the value is selected based on the
user input, and used for all the packets.

In this chapter, we investigate the effect of using a variable step size under
MaxFlex selection function. First, we explain the idea behind using variable step size
values and why it is appealing. Then, we propose different approaches on how to
calculate the value of the variable step size. Finally, we provide the simulation results
and explain how the results are related to the fixed step size results.

The chapter is organized as follows; Section 4.1 provides the motivation behind the
variable step size idea. In Section 4.2, we explain the proposed approaches and their
operation. We present the simulation environment and results in Section 4.3. Finally,
Section 4.4 concludes the chapter.

4.1. Motivation

The use of fixed step size MMaxFlex with step size greater than one was shown to
be effective in redistributing the traffic away from the central part of NoC switches and
move more towards the border switches. This redistribution had a direct effect on
decreasing the flits deflection count and thus decreasing the overall average packet
latency.

Generally speaking, the idea is to utilize the NoC switches and links more in a way
that enhances the traffic distribution even better. As a way to change the traffic
distribution, we assign a different step size for each packet instead of assigning the
same step size value to all the packets. How to calculate the value of a different step
size for each packet differs based on the criteria used. We explain the different
approaches in the next section.

4.2. Proposed Variable Step Size Approaches

In this section, we list and explain the different approaches used to calculate the
variable step size value for n x n bufferless mesh. The approaches basically falls under
two categories; the first one deals with the NoC nodes as a standalone modules, while
the second category divides the NoC into a number of rectangular regions and assign
each node to a specific region. In other words, we distribute the nodes of the NoC to a
group of non-interleaving rectangular regions such that each region contains a group of
nodes (at least one node and up to n X n nodes). Also, we assign indices to each region

56



™ / e \
\ / / N
/ \ / /

/ . P N e N /

:l P J‘ — - J‘ ~ -~ J ~
AN yd \ ™
./ \ “/ \

/ \ / /

/ \. S AN / \, /

Figure 32: 4x4 mesh divided into four 2x2 regions

in a similar manner to the 2D NoC switches. In Figure 32, we show an example of 4x4
mesh divided into four regions along with the assigned indices.

In the following sub-sections, we explain and evaluate five approaches to calculate
the variable step size. The first approach falls under the first category where we deal
with the standalone nodes, while the rest of the approaches belong to the second
category dividing the NoC into regions. The first approach calculates the step size
based on the distance between the source and destination nodes of the flit. The second
approach calculates the step size based on the distance between the source and
destination regions of the flit. The third approach uses MMaxFlex with independent
variable step sizes for routing inside the region and for routing between regions (i.e.
infout region routing). Finally, the fourth approach incorporates the in/out region
routing with the distance between the source and destination nodes to calculate the step
size.

4.2.1. Using the Manhattan distance between NoC nodes (NMDVS)

This approach aims to assign small step size to near nodes and large step size to
nodes far from each other. By this approach, we use the information gained from the
fixed step size analysis to better distribute the traffic by using smaller step size to the
traffic between nearby nodes.

In NMDVS, we use the Manhattan distance between the source and destination
nodes. Specifically, we calculate the variable step size as a percentage of the calculated
Manhattan distance.

SS = minimum(Percentage X d,n)
Where d is the Manhattan distance between source and destination nodes; and

Percentage is a customizable variable, 1 < Percentage < 100.

57



Using large step size value for the traffic between nearby nodes is not effective.
This can be explained by the following; in case of nearby nodes, the distance between
the source and destination nodes is small, so the difference between the source and
destination X-dimension or Y-dimension is also small (maximum value is equal to the
distance between source and destination incase same row or column). Thus, using large
step size leads to moving similar to using Straight Line selection function which leads
to losing the freedom granted by MaxFlex. Given this insight and the analysis given in
Chapter 3, we use smaller step size for the near nodes and larger step for the far nodes
leading to the diversity we want in the traffic distribution.

4.2.2. Using the Manhattan distance between NoC regions
(RMDVYS)

As in NMDVS, this approach aims to assign small step size to near nodes and large
step size to nodes far from each other. In RMDVS, we apply the regions concept. We
divide the NoC into group of regions, and then assign each node to one of the regions.

To calculate the step size, RMDVS approach uses the Manhattan distance between
the source and destination regions. Specifically, it calculates the step size based on the
difference between regions indices i.e. Xgegion and Yregion. If the nodes are in the same
region then the difference is zero and the step size is one. Otherwise, if the nodes are in
different regions, then the step size is calculated based on how near or far are the
regions.

S§ = AXRegion + AYRegion +1
AXRegion = |XSrc Region — XDst Regionl

AYRegion = |YST‘C Region — YDst Regionl

Where Xgc region 1S the X index of the source node region; Ys,cregion IS the Y
index of the source node region; Xpg region IS the X index of the destination node
region; and Ypg; region IS the Y index of the destination node region.

Near regions most probably leads to smaller difference in the Xgegion and Ygegion
indices which leads to smaller step size. On the contrary, far regions lead to larger
difference and hence larger step size. Also, this approach matches the analysis
presented in Chapter 3.

4.2.3. Using In-Region and Out-Region routing (IORVYS)

In this approach, we use the regions concepts in a different way. Similar to the
RMDVS, we divide the NoC into regions and assign nodes to each region. However, in
IORVS, we differentiate between the traffic between nodes belonging to the same
region (in-region routing), and the traffic between nodes from different regions (out-
region routing). In case of in-region routing, we consider each region to be a separate
smaller NoC that can route the traffic between its own nodes using a step size that fits
its characteristics. While in out-region routing, we look at the region as a whole unit
and route the data between the regions using a step size that is tailored to the inter-
region traffic.

58



SSITL Region = Fixed
SSout Region = Fixed

Based on the value of both in-region and out-region step sizes, the performance of
the MaxFlex varies. Thus, using the freedom granted by IORVS, we study the different
behavior between the near nodes traffic and the far nodes traffic under different in-
region and out-region step sizes. Also, we study the effect of the region size on the
overall performance.

4.2.4. Using the Manhattan distance between NoC nodes for Out-
Region routing (ORMDVS)

In this approach, we mix between using the regions concepts as in IORVS with
using the Manhattan distance between NoC nodes approach as in NMDVS.
Specifically, we use a fixed step size customized for the in-region routing, and use the
Manhattan distance between NoC nodes for calculating the out-region step size.

SSin Region = Fixed
SSOut Region = Percenta.ge X dRegion X SizeRegion

Where dgegi0n is the Manhattan distance between source and destination regions;
Percentage is a customizable variable, 1 < Percentage < 100; and Sizegegion
is the number of row (or column) nodes in a region.

In other words, ORMDVS uses the idea of assigning the step size as a percentage
of the distance between the source and destination nodes mentioned in NMDVS, but in
order to calculate such distance, it uses the Manhattan distance between the regions and
the region’s size instead of using the Manhattan distance between source and
destination nodes. It aims to get the advantage of NMDVS and the flexibility of
IORVS.

4.3. Simulation Results

In this section, we adapt the same experimental setup used in Chapter 3 to examine
the use of the variable step size proposed approaches. First, we evaluate the NMDVS
approach separately to get an estimate for the value of the percentage to use. Then, we
evaluate the RMDVS approach and compare it with another formula that performs the
opposite functions of RMDVS. I0ORVS is evaluated to study the effect of the region
size, in addition to differentiate between the traffic between near nodes versus the
traffic between far nodes. Finally, we present the ORMDVS approach performance
results.

To evaluate NMDVS, we assigned a different step size for each packet based on
the Manhattan distance between the packet's source and destination. For packet P, let
the Manhattan distance between the source and destination is distance d, the value of
the step size for P is a percentage of d. We examined different percentage value ranging
from 10% to 90%.

59



100

——10% [
20% ‘

——30%

901 = 4 = 40% B
50% '

-+ -60% '

oL 'k 70% !
80% N

ek 90% K

Mo om0 e

Latency (Cycles)

; ; ; ; i
22 0.23 0.19 0.2 0.21 0.23

0.19 02 0.21 0. 0.
Flit Injection Rate (Flit/Cycle/Node) Flit Injection Rate (Flit’Cycle/Node)

Figure 33: Average packet latency for ~ Figure 34: Average deflection count for
NMDVS using different % values NMDVS using different % values

Figure 33 and Figure 34 shows that as the percentage value increases, the average
packet latency decreases. The best percentage value is about 60% of the distance. Also,
Figure 33 and Figure 34 show that using higher percentage values degrades the
performance as it leads to step sizes that can be similar to using a large fixed step size.
These results matches the results for the fixed step size, as using the percentage value
of 60% leads to larger step size value for the packets with long distance to go and
smaller step size for the packets with short distance to go.

For RMDVS evaluation, we started by presenting another formula, RMDVS" that
performs the exact opposite of RMDVS. In other words, RMDVS assigns small step
size for the near nodes communication and large step size for the far nodes
communication; however, in RMDVS’, by subtracting the differences between the X
and Y dimensions of the NoC regions, we tend to generate small step size for the far
nodes traffic and large step size for the near nodes traffic. Specifically, RMDVS" uses
the following formula to calculate the step size.

S§ = |AXRegion - AYRegL'onl +1
AXRegion = |X5‘rc Region — XDst Regionl
AYRegion = |YSrc Region — YDst Regionl

Where Xg.c pegion 1S the X index of the source node region; Ys,¢ gegion IS the Y
index of the source node region; Xpg region IS the X index of the destination node
region; and Ypg; region IS the Y index of the destination node region.

Also, to study the effect of changing the region size under the RMDVS approach,
we simulated both RMDVS and RMDVS' using 2x2 region size and 5x5 region size
under 10x10 mesh. We expect RMDVS' to not perform well as it does not conform to
the aforementioned fixed step size analysis in Chapter 3.

60



100

=—+—RMDVS/R2x2 |

RMDVS'/R2x2
2.3 === RMDVS/R5X5 |
=+ =RMDVS'/R5x5| .

1
—— RMDVS/IR2:2 2.4l
RMDVS'/R2x2 ‘ ‘ :
—4— RMDVS/R5x5
901 - 4 - RMDVS/R5x5 22

701

60

Latency (Cycles)

50

S el R SRR L

10

-
-
-
-

20 !
0.23

i i i ; i i
0.19 02 0.21 0.22 0.23 0.19 0.2 0.21 0.
Flit Injection Rate (Flit/Cycle/Node) Flit Injection Rate (Flit’Cycle/Node)

Figure 35: Average packet latency for ~ Figure 36: Average deflection count for
RMDVS compared with RMDVS® RMDVS compared with RMDVS®

As shown in Figure 35 and Figure 36, RMDVS performance exceeds the
performance of its opposite formula, RMDVS’, in terms of both average packet latency
and average deflection count respectively. The superior performance is accounted for
how RMDVS step size calculation conforms to the analysis presented in Chapter 3.
RMDVS calculates a large step size for the far node communication, while RMDVS®
calculates a small step size. As a result, given the analysis in Chapter 3, assigning a
large step size decreases the concentration on the NoC central switches and moves part
of the traffic to the borders. Also, RMDVS calculates a small step size in case of near
nodes communication which produces diversity in distributing the NoC traffic leading
to better link utilization, thus better packet latency and deflection count.

Concerning the region size, as shown in both figures, using 2x2 regions resulted in
better performance than using 5x5 regions. This is because using 2x2 region size
resulted in 25 regions, while using 5x5 region size resulted in 4 regions only. Increasing
the number of regions resulted in more fine control in the step size calculation, thus
better distribution for the values of the calculated step size.

In IORVS, we divide the NoC into regions, and differentiate between nodes
communication in the same region and nodes communication between regions in order
to study the difference between the near nodes traffic and the far nodes traffic, and to
study the effect of the region size on the overall performance. To evaluate IORVS, we
simulated 10x10 mesh using 2x2 regions and 5x5 regions. Also, as the performance is
affected by the in-region step size and out-region step size, we simulated all the
possible combinations for the in-region and out-region step sizes, In other words, for
every in-region step size value ranging from one to nine, we used out-region step size
value ranging from one to nine. Thus, for each region size, we simulated 81
experiments to cover all the cases (i.e. 162 for both 2x2 and 5x5 regions).

From Figure 37 to Figure 72, we show the average packet latency and average
deflection count for each of the 162 experiments. From these figures, concerning far
nodes traffic, we noted that under any in-region step size value, using a large step size
for out-region communication leads to better performance under both region sizes.
Specifically, step size of seven or eight leads to the best performance under the used in-
region step size. This conforms to the analysis and step size estimation done in Chapter

61



100

L
== In1/0ut1/R2x2

In1/0ut2/R2x2
== In1/Out3/R2x2
=+ =In1/Out4/R2x2

In1/0ut5/R2x2
= + =In1/0ut6/R2x2
ok In1/0ut7/R2x2

In1/0ut8/R2x2
4+ In1/0ut9/R2x2

90|

e e o .

80

701

Latency (Cycles)

0.19 0.2 0.22 0.23

.. 021
Flit Injection Rate (Flit/Cycle/Node)

Figure 37: Average packet latency for
different $Sou¢region Values under in

SSnregion = 1 USINg 2X2 region size

25 -

24|/ —— Int/outR22

g In1/Out2/R2x2

2.3 —4— In1/0ut3/R2x2

22l = + = In/0ut4/R22

In1/Out5/R2x2

210 - + - In1/0ute/R2x2

olf 4+ Int/Out7/R2x2

In1/Out8/R2x2

. 9[]+ IntioutarR2x2
E 18 -

L L ;
0.2 0.21 0.22 023
Flit Injection Rate (Flit’/Cycle/Node)

Figure 39: Average deflection count for
different $5¢gyregion Values under in

SSnregion = 1 USING 2X2 region size

62

100 - " 3
—— In1/Out1/R5x5 &
In1/Out2/R6x5 S
—i— In1/Out3/R5x5
9001 = & = In1/Out4/REXS
IN1/Out5/R5x5
- + - In1/Out6/R5x5
8oL| " IN1/OUt7/REXS
In1/OutB/R6x5
<ok In1/OUtS/REXS
_ 1o
K]
o
g
z
g
5
; ;
0.19 0.2 022 0.23

.. 0.21 ..
Flit Injection Rate (Flit/Cycle/Node)

Figure 38: Average packet latency for
different $Sou¢region Values under in

S8 mregion = 1 USiNg 5x5 region size

250 : -

2.4/ —F—In1/Out1/R5x5 |
) In1/Out2/R5x5

2.3 == In1/Out3/REXE |

21| = # = In1/OUt4/REx5 |
In1/Out5/R5x5

211 - + ~ In1/OutB/REx5 |

2l In1/Out7/R5X5 | .
In1/Out8/R5x5

[l: 4 In1/Out9/R5x5|

‘fr ﬁ ,

0.2 021

i
0.23

0.22
Flit Injection Rate (Flit’/Cycle/Node)

Figure 40: Average deflection count for
different $S¢gu¢region Values under in

SSmregion = 1 UsINg 5x5 region size



100

L

== In2/0ut1/R2x2
In2/0ut2/R2x2
== In2/0ut3/R2x2
=+ =In2/0ut4/R2x2
In2/0ut5/R2x2

= + = In2/Qut6/R2x2
vk In2/0ut7/R2x2
In2/Qut8/R2x2

o+ In2/Qut9/R2x2

90|

80

701

Latency (Cycles)

0.2 0.22

021 0.23
Flit Injection Rate (Flit/Cycle/Node)

0.19

Figure 41: Average packet latency for
different $Sou¢region Values under in
SSnRegion = 2 USING 2X2 region size

25- :
2.4l ——n20ut1/R22
) In2/0ut2/R2x2
2.3 == In2/Out3/R2x2
22| = # = In270utaR2x2
In2/Outs/R2x2
210 - + - In2/0ute/R2x2
2l 1+ IN2IOut7/R22
In2/Out8/R2x2
. 19[+ In2ioutorR2x2
518 -
O 17
8 16
3
215
Q94
&
© 1.3
o
z12

i
0.23

22

0.2 0.21 0.
Flit Injection Rate (Flit’/Cycle/Node)

Figure 43: Average deflection count for
different $5¢gyregion Values under in

SSnRegion = 2 USING 2X2 region size

63

100

1
== In2/0ut1/R5x5
In2/Out2/R6x5

1]
U
n
—— In2/Out3/R5x5 I i
9001 = & = In2/Out4/REXS i L
In2/Outs/R5%5 d o
- 4 = In2/OutB/R5x5 " B
8ol " In2/Out7/REx5 ! T

In2/Out8/R5x5
=+ In2/Qutd/R5x5

Latency (Cycles)

0.23

0.19

0.2 0.21 0.22
Flit Injection Rate (Flit/Cycle/Node)

Figure 42: Average packet latency for
different $Sou¢region Values under in

S8 mRegion = 2 USINg 5x5 region size

250 : -

2.4/ —+—1n2/Out1/R5x5 |
) In2/Out2/R5x5

2.3 == In2/OUt3/REXE |

2l] = * = In2/Out4/REx5 |
In2/Out5/R5x5

211 — 4 — In2/OutB/RExX5 |

2l In2/Out7/R55 | .
In2/Out8/R5x5

[l: 4 In2/Out9/R5x5|

ol : ‘ ‘
0.2 0.21

i
0.23

0.22
Flit Injection Rate (Flit’/Cycle/Node)

Figure 44: Average deflection count for
different $5¢g,¢region Values under in

SSmRegion = 2 USINg 5x5 region size



100

x

== In3/0ut1/R2x2
In3/Out2/R2x2
== In3/0ut3/R2x2
=+ =In3/0ut4/R2x2
In3/0ut5/R2x2

= + = In3/0ut6/R2x2
ok In3/0ut7/R2x2
In3/0ut8/R2x2

v In3/0utd/R2x2

90|

80

R ..,..l...’.';q.q,...........

701

Latency (Cycles)

0.22 0.23

0.2 021
Flit Injection Rate (Flit/Cycle/Node)

0.19

Figure 45: Average packet latency for
different $Sou¢region Values under in
SSnRegion = 3 USING 2X2 region size

[| === In3/0ut1/R2x2
In3/0ut2/R2x2

2.3 === In3/0ut3/R22
22| = + = In3I0utd/R22
In3/0ut5/R2x2
211 = 4 = In3/0ut6/R2x2
2l ' In3IOut7/R2x2
In3/0utB/R2x2
B 191 . .\ In3/0ut9/R22
€18 :
o
O 17
8 16
3
e 15
Q94
&
§13
o
z12

02 0.21

0.
Flit Injection Rate (Flit’/Cycle/Node)

Figure 47: Average deflection count for

different $5¢gyregion Values under in
SSnRegion = 3 USING 2X2 region size

I
22 0.23

64

100 ' i :
—i— In3/0ut1/R5x5 . H
In3/Out2/R5%5 i H
gol| —H— Ind/Outa/R6x5 1 i
= + = In3/Out4/R5x5 1 i
IN3/Out5/R5%5 I i
- + = In3/Out6/R5%5 " t
8o} ' In3/Out7/R6x5 X ;g. .
In3/Out8/R5x5 X S~
oo+ IN3/OUtS/REXS n , ¥
700 ‘ SF
7 o
3 K
S 60
g
o
ko
5
50

0.2 0.21 0.22 0.23

0.19 . . .
Flit Injection Rate (Flit/Cycle/Node)

Figure 46: Average packet latency for
different $Sou¢region Values under in
S8 mRegion = 3 UsiNg 5x5 region size

251 - -

2.4/ —F—In3/Out1/R5x5 |
- In3/0ut2/R5x5

2.3 —4— In3/Out3/REx5 | -

2|] = # = In3/0ut4/REx5 |
In3/Out5/R5x5

211 - + — In3/OutB/REx5 |

2l 4 In3/0ut7/R5X5 | .
In3/Out8/R5x5

[1 4 In3/Out9/REx5 |

o : : :
0.2 0.21

i
0.23

0.22
Flit Injection Rate (Flit’/Cycle/Node)

Figure 48: Average deflection count for
different $S¢gu¢region Values under in

SSmregion = 3 USINg 5x5 region size



100

L

== In4/Out1/R2x2
In4/Out2/R2x2
== In4/Out3/R2x2
=+ =In4/Out4/R2x2
In4/0Out5/R2x2

= + = In4/Qut6/R2x2
ok In4/Out7/R2x2
In4/Out8/R2x2

'+ In4/Outd/R2x2

90|

o TeI—

80

701

Latency (Cycles)

0.2 021
Flit Injection Rate (Flit/Cycle/Node)

0.19 0.22 0.23

Figure 49: Average packet latency for
different $Sou¢region Values under in

S8 nRegion = 4 USING 2X2 region size

[| === In4/Out1/R2x2
Ind/Out2/R2x2
2.3[| =+ In4/Out3/R2x2
L| = # = In4/Outd/R2x2
In4/Out5/R2x2

[ = + = In4/Qut6/R2x2
2H ' Ind/Out7/R2x2
In4/Out8/R2x2
[1 ' Ind/Outg/R2x2

I
22 0.23

02 0.21

0.
Flit Injection Rate (Flit’/Cycle/Node)

Figure 51: Average deflection count for
different $5¢gyregion Values under in

SSnRegion = 4 USING 2X2 region size

65

100

1 ) P
—4— In4/Out1/R5x5 1 i
In4/Out2/R5x5 I i
gol| —F—In4/Outa/R5x5 ! L
= = In4/Out4/R5x5 H !
IN4/OUtS/REX5 ! H
=+ - In4/Out6/R5x5 : :
8o} + ' IN4/OUt7/RExE f 'i '
IN4/OutB/R5X5 i
1okt In4/OUt9/REXS ¥
70 |
®
s
S wl
3
o
k)
5
50

0.19 0.2 0.21 0.22 0.23

Flit Injection Rate (FI/Cycle/Node)

Figure 50: Average packet latency for
different $Sou¢region Values under in

S8 mRegion = 4 USINg 5x5 region size

250 : -

2.4/ —F—In4/Out1/R5x5 |
) In4/Out2/R5x5

2.3 == IN4/OUt3/REXE |

22l] = * = In4/Out4/REx5 |
In4/Out5/R5x5

211 - + — In4/OutB/R5xX5 |

2l 4 In4/OUt7/R55 | .
In4/Out8/R5x5

[: 4 In4/Out9/R5x5|

05 L L L
0.2 021

i
0.23

0.22
Flit Injection Rate (Flit’/Cycle/Node)

Figure 52: Average deflection count for
different $S¢gu¢region Values under in
SSmRegion = 4 USING 5X5 region size



100

L

== In5/0ut1/R2x2
In5/Out2/R2x2
== In5/0ut3/R2x2
=+ =In5/0ut4/R2x2
In5/0ut5/R2x2

= + = In5/0ut6/R2x2
o In5/0ut7/R2x2
In5/Qut8/R2x2

'+ In5/Out9/R2x2

90|

80

701

Latency (Cycles)

0.2 0.22 0.23

0.19 021
Flit Injection Rate (Flit/Cycle/Node)

Figure 53: Average packet latency for
different $Sou¢region Values under in
SSnRegion = 5 USING 2X2 region size

25- :
2.4/ ——InslOut1/R22
) In5/0ut2/R2x2
2.3 =—4— In5/0ut3/R2x2
22| = + = Ins/0uta/R2x2
In5/0uts/R2x2
210 - + - In5/0ut6/R2x2
2l 1+ InSIOUt7/R2X2
In5/OutB/R2x2
. 19+ InslOuta/R2x2
518 -
O 17
8 16
3
215
Q94
&
© 1.3
212

I
22 0.23

02 0.21

0.
Flit Injection Rate (Flit’/Cycle/Node)

Figure 55: Average deflection count for
different $5¢gyregion Values under in
SSnRegion = 5 USING 2X2 region size

66

Latency (Cycles)

100

1
=== In5/0ut1/R5x5
In5/Out2/R6x5
== In5/0ut3/R5x5
= =+ = In5/0ut4/R5x5
In5/0ut5/R5x5
= + = In5/0ut6/R5x5
o=+ In5/Out7/R5x5

90

In5/0ut8/R5x5
'+ In5/Outd/R5x5

0.2 0.22 0.23

.. 0.21 ..
Flit Injection Rate (Flit/Cycle/Node)

Figure 54: Average packet latency for
different $Sou¢region Values under in
S8 mRegion = 5 USINg 5x5 region size

251 - -

24| —+—In5/0Ut1/R5x5 |
- In5/Out2/R5x5

2.3 —4— In5/Out3/REX5 | -

22|| = # = In5/0Ut4/REx5 |
In5/Out5/R5x5

211 - + — In5/0utB/REX5 |

2} 4 InS/OUt7/R5X5 | .
In5/Out8/R5x5

[1 4 InS/OUt9/REX5 |

i

I
0.2 021 0.23

0.22
Flit Injection Rate (Flit’/Cycle/Node)

Figure 56: Average deflection count for
different $S¢gu¢region Values under in
SSmRegion = 5 USINg 5x5 region size



100

L

== In6/Out1/R2x2
In6/Out2/R2x2
== In6/Out3/R2x2
=+ =In6/Out4/R2x2
In6/0ut5/R2x2

= + = In6/Out6/R2x2
ok In6/Out7/R2x2
In6/Out8/R2x2

'+ In6/Outd/R2x2

90|

80

701

Latency (Cycles)

0.22 0.23

0.2 021
Flit Injection Rate (Flit/Cycle/Node)

0.19

Figure 57: Average packet latency for
different $Sou¢region Values under in
S8 nRegion = 6 USING 2X2 region size

|| === In6/0ut1/R2x2
In6/0ut2/R2x2

2.3 === In6/OUt3/R2X2
22| = + = InB/IOW4/R22
InBIOUt5/R2x2
211 = 4 = In6/Out6/R2x2
2l ' InBIOUt7/R2x2
ING/OUtB/R2x2
B 191 . 4\ In6/OUt9/R22
€18 :
o
O 17
8 16
3
e 15
Q94
&
§13
o
z12

L L ;
0.2 0.21 0.22 023
Flit Injection Rate (Flit’/Cycle/Node)

Figure 59: Average deflection count for

different $5¢gyregion Values under in
SSnRegion = 6 USING 2X2 region size

67

Latency (Cycles)

100

1

= In6/Out1/R5x5
In6/Out2/R6x5

== In6/Out3/R5x5

9007 = 4 = InBIOUt4/REXS i
IN6/OUt5/REX5 i

- 4+ - In6/OUtE/R5x5

80L| " INBIOUL7/REXS

In6/Out8/R5x5
'+ In6/Outd/R5x5

0.22 0.23

0.2 0.21 ..
Flit Injection Rate (Flit/Cycle/Node)

Figure 58: Average packet latency for
different $Sou¢region Values under in
S8 mRegion = 6 USINg 5X5 region size

251 - -

2.4/] —F—In6/OUt1/R5x5 |
- In6/Out2/R5x5

2.3 —4— In6/OUt3/REX5 | -

2|| = # = InB/OUt4/REX5 |
InB/OUt5/R5x5

211 - + — InB/OUtBIREX5 |

2l 4 INB/OUt7/REX5 | .
InB/Out8/R5x5

[1 4 InB/OUtY/REX5 |

i

I
0.2 021 0.23

0.22
Flit Injection Rate (Flit’/Cycle/Node)

Figure 60: Average deflection count for

different $S¢gu¢region Values under in
SSmRegion = 6 USING 5X5 region size



100 L . ' 100 ' .
—i— In7/Outi/R2x2 X H —4— In7/Out1/R5x5 '
In7/Out2/R2x2 i i In7/Out2/R6x5 1
—— In7/Out3/R2x2 I i —4— In7/Out3/R5x5 I
9011 = 4 = In7/Out4/R2x2 i i 90| = 4 = In7/Out4/R5x5 I
IN7/Out5/R2x2 N ? IN7/OutS/R5%5 d
- + = In7/0ut6/R2x2 X & - + = In7/Out6/R5x5 H
g0l '+ IN7/0ut7/R2x2 ' ik 8ol " In7IOut7/REXE |
IN7/Out8/R2x2 s E IN7/Out8/R5%5 s
o In7/Out9/R2x2 £S =+ IN7/OUt/R5XS
70+ £ 70
@ F o 7
° s
g g
Iy 3
g g
3 5
H i i
0.19 02 0.21 0.22 0.23 0.19 02 0.21 0.22 0.23
Flit Injection Rate (Flit/Cycle/Node) Flit Injection Rate (Flit/Cycle/Node)

Figure 61: Average packet latency for Figure 62: Average packet latency for

different $Sou¢region Values under in different $Sou¢region Values under in
SS,nReg,-on = 7 using 2x2 region size SS,nRegi,m = 7 using 5x5 region size
25 - 251 -
241 =t [n7/Out1/R2x2 24} = IN7/OUt1/R5x5 |
. In7/0Out2/R2x2 iy In7/0Out2/R5x5
2.3 === In7/0ut3/R2x2 . 2.3 | === In7/Out3/R5x5 | -
22| = + = In7/0uta/R2x2 2.2}| = # = In7/Out4/REx5 | .
In7/0ut5/R2x2 In7/Out5/R5x5
211 = 4 = In7/0ut6/R2x2 241 = 4 = In7/Out6/R5x5 |
2H ' In7/0ut7/R2x2 . 2H ¥ In7/Out?/R5X5 | -
In7/0Out8/R2x2 In7/0Out8/R5x5
[1+ =k IN7/Out9/R22 - [l IN7/Out9/R5x5 |~

i i

; ;
0.19 02 0.21 0.22 023 0.19 0.2 021 0. 0.23
Flit Injection Rate (Flit’/Cycle/Node) Flit Injection Rate (Flit’/Cycle/Node)

Figure 63: Average deflection count for  Figure 64: Average deflection count for
different $5¢gyregion Values under in different $5g,¢region Values under in
SSnRegion = 7 USING 2X2 region size SSmRegion = 7 USINg 5X5 region size

68



100

L

== In8/Out1/R2x2
In8/Out2/R2x2
== In8/Out3/R2x2
=+ =In8/Out4/R2x2
In8/0ut5/R2x2

= + = In8/0ut6/R2x2
ok InB/Out7/R2x2
In8/Out8/R2x2

v In8/Outd/R2x2

90|

80

701

Latency (Cycles)

0.23

021 0.22
Flit Injection Rate (Flit/Cycle/Node)

0.19 0.2

Figure 65: Average packet latency for
different $Sou¢region Values under in
SSnregion = 8 USING 2X2 region size

|| === In8/0ut1/R2x2
In8/0ut2/R2x2
2.3[| =+ In8/0ut3/R2x2
L| = # = In8/0ut4/R2x2
In8/Out5/R2x2

[ = + = In8/0ut6/R2x2
o In8/Out7/R2x2

In8/Out8/R2x2
[1 ' In8/OUt9/R2x2

2H

0.2 0.21 0.
Flit Injection Rate (Flit’/Cycle/Node)

Figure 67: Average deflection count for

different $5¢gyregion Values under in
SSnregion = 8 USING 2X2 region size

I
22 0.23

69

100

1
==} In8/Out1/R5x5
In8/Out2/R6x5
== |n8/Out3/R5x5
= =+ = In8/Out4/R5x5
In8/Out5/R5x5
= + = In8/0ut6/R5x5
o=+ InB/Out?7/R5x5
In8/Out8/R5x5
o= In8/Outd/R5x5

90

80

701

Latency (Cycles)

0.23

0.2 0.21 ..
Flit Injection Rate (Flit/Cycle/Node)

0.22

Figure 66: Average packet latency for
different $Sou¢region Values under in
S8 mregion = 8 USINg 5x5 region size

250 : -

2.4/ ——In8/Out1/R5x5 |
) In8/Out2/R5x5

2.3 =4 INB/OUL3/REXE |

2|| = * = InB/OUt4/REX5 |
In8/Out5/R5x5

211 — + — InB/OUtBIREX5 |

2l 4 InB/OUt7/R5X5 | .
InB/Out8/R5x5

'+ InB/Out9/R6x5 |

05 L L L
0.2 021

;
0.22 0.23
Flit Injection Rate (Flit’/Cycle/Node)

Figure 68: Average deflection count for
different $S¢gu¢region Values under in
SSmregion = 8 USINg 5x5 region size



100

L

== Ing/Out1/R2x2
In9/Out2/R2x2
== In8/Out3/R2x2
=+ =In8/Outd4/R2x2
Ing/Out5/R2x2

= + = In8/Out6/R2x2
ok In9/Out7/R2x2
In9/Out8/R2x2

'+ InS/Outd/R2x2

90|

80

70

Latency (Cycles)

0.2 0.21 0.22 0.23

0.19 .. .
Flit Injection Rate (Flit/Cycle/Node)

Figure 69: Average packet latency for
different $Sou¢region Values under in
S8 nRegion = 9 USING 2X2 region size

[| === Ing/Out1/R2x2
In9/0ut2/R2x2

2.3 === In9/OUt3/R22
22| = + = In9IOud/R22
In9/Out5/R2x2
211 = 4 = In9/Out6/R2x2
2l ' IN9IOUt7/R2x2
In9/OUtB/R2x2
B 190 . .\ In9/OUt9/R22
€18 :
o
O 17
8 16
3
e 15
Q94
&
§13
o
z12

i
0.23

22

0.2 0.21 0.
Flit Injection Rate (Flit’/Cycle/Node)

Figure 71: Average deflection count for
different $5¢gyregion Values under in

SSnRegion = 9 USING 2X2 region size

70

100

1
=+ In9/Out1/R5x5

In9/Out2/R6x5
== Ing/Out3/R5x5
=+ = In9/Out4/R5x5

In9/Out5/R5x5
= + = In9/Out6/R5x5
k1 In9/Out?/R5x5

In9/Out8/R5x5
'+ In9/Outd/R5x5

90

»,

",

80

.

701

Latency (Cycles)

0.2 0.22

0.21 . 0.23
Flit Injection Rate (Flit/Cycle/Node)

0.19

Figure 70: Average packet latency for
different $Sou¢region Values under in

S8 mRegion = 9 USING 5x5 region size

250 : -

2.4/ ——1n9/Out1/R5x5 |
) In9/Out2/R5x5

2.3 == INO/OUt3/REXE |

22|] = # = In9/OUt4/REx5 |
In9/Out5/R5x5

211 - + — IN9/OutBIREX5 |

2l 4 In9IOUtTIREX5 | .
In9/Out8/R5x5

'+ In9/Out9/R6x5|

I
0.2 021 0.23

0.22
Flit Injection Rate (Flit’/Cycle/Node)

Figure 72: Average deflection count for
different $S¢gu¢region Values under in
SSmRegion = 9 USING 5X5 region size



3. It was estimated that using 60% to 80% of the NoC dimension n as a step size
performs the best under MMaxFlex (7/10 = 70% and 8/10 = 80%).

As for the near region traffic, from the figures, the performance varies based on the
used in-region step size value, and the used region size value. For example, the best
performance under region size 5x5 is achieved using in-region step size of three. This
in-region step size for the 5x5 regions also conforms to the estimation done in Chapter
3(3/5 = 60%). As for 2x2 regions, the best value is achieved using in-region step size
of four. However, the performance of all the in-region step size values is almost similar
as the used region size is small (2x2 regions). As a result, using any in-region step size
value, ranging from one to nine, leads to a behavior similar to DO routing inside 2x2
region. For the same reasons, using 5x5 regions, any value for in-region step size larger
than three leads to similar performance.

As for the effect of the region size, in the figures (from Figure 37 to Figure 72), the
size of the region doesn’t have a clear cut effect on IORVS approach. This is due to the
fact that the calculation of the in-region or out-region step size is not function in the
region size or the number of regions as was in RMDVS. In other words, for any region
size used and following the work done in Chapter 3, we can estimate a value for the in-
region step size, and use large step size for out-region step size to achieve the best
possible performance under the used region size.

Finally, in ORMDVS approach, we combine the calculation of the variable step
size in NMDVS approach, and the flexibility of IORVS approach. Specifically, we use
divide the NoC into regions, use a step size customized for the in-region routing
behavior, and calculate the out-region step size using a formula similar to what was
used in NMDVS.

We simulated 10x10 mesh using 2x2 regions and 5x5 regions. For the percentage
value, we used 60% as it achieved the best performance under NMDVS. For the in-
region step size, we used different values ranging from one to nine to evaluate the
effect of changing the in-region step size. The results for 2x2 regions are shown in
Figure 73 and Figure 74, while the results for 5x5 regions are in Figure 75 and Figure
76.

For 2x2 regions, in Figure 73 and Figure 74, the performance under any in-region
step size is similar with a slight advantage for in-region step size of one. This is due to
using small region size (2x2 regions). As a result, using any in-region step size value,
ranging from one to nine, leads to a behavior similar to DO routing inside 2x2 region.
On the other hand, in Figure 75 and Figure 76, using 5x5 regions leads to worse
performance than using 2x2 regions. The best performance for 5x5 regions is achieved
using in-region step size of four due to the step size estimation presented in Chapter 3.

Under ORMDVS, using 2x2 regions is better than using 5x5 regions as 2x2 regions
generates more regions than using 5x5 regions (25 regions versus 4 regions). More
regions means for flexibility in calculating the out-region step size. For example, using
5x5 regions (4 regions), the distance between regions can be one or two only. Thus, the
distance estimated between the communicating nodes, based on the used formula, has a
two values only (five or ten) leading to out-region step size values of three and six only.
On the other hand, using more regions under 2x2 region size, gives more values for the
distance between the regions, thus leading to more variability in the calculated out-
region step size.

71



2-

1001 S
—i— In1/60%/R2x2 —— In1/60%/R2x2

In2/60%/R2x2 : 1.9H In2/60%/R2x2 | -
—— In3/60%/R2x2 —— In3/60%/R2x2

907 = 4 = Ina/B0%/R2x2 181 = + — In4/BO%/RD2|
In5/60%/R2x2 In5/60%/R2x2

- + = In6/60%/R2x2 1.77 = 4 = In6/B0%/R2x2 |

g0l '+ In7/60%/R2x2 Ll InTBO%R22
In8/60%/R2x2 / In8/60%/R2x2
ok In9/60%/R22 - IN9IBO%/R2X2

60

Latency (Cycles)

50

309

20 i i i ; 0.5 i i
0.19 02 0.21 0.22 0.23 0.19 0.2 0.21 0.
Flit Injection Rate (Flit/Cycle/Node) Flit Injection Rate (Flit’Cycle/Node)

0.23

Figure 73: Average packet latency using Figure 74: Average deflection count

different $5,,gegion Values and 60% using different $5,region Values and
under 2x2 region size 60% under 2x2 region size
100 i 2r -
== In1/60%/R5x5 H = In1/60%/R5X5
In2/60%/R5x5 1.9H In2/60%/R5x5 | -
== In3/60%/R5x5 === In3/60%/R5x5
901 - 4 = Ind/B0%/R5X5 181 = & = In4/60%/R5x5| -
In5/60%/R5x5 In5/60%/R5x5
= 4 = In6/60%/R5x5 3 1.77 = 4 = In6/60%/R5X5 |
gol| '+ In7/60%/R5x5 | 16l ¥ INTIBO%/RES)|
In8/60%/R5x5 5 /] - InB/60%/R5x5
e In9/80%/R5x5 3 " ik IN9/60%/R5x5
4

Latency (Cycles)

i i i i i j
22 0.23 0.19 0.2 0.21 0.22 0.23
Flit Injection Rate (Flit’/Cycle/Node)

20 i i
0.19 02 0.21

0.
Flit Injection Rate (Flit/Cycle/Node)

Figure 75: Average packet latency using Figure 76: Average deflection count
different $5,,region Values and 60% using different $8,gegion Values and
under 5x5 region size 60% under 5x5 region size

Till now, we presented each approach results separately. To evaluate the different
approaches, we selected the best result achieved under each approach, and compared
these results with using fixed step size of eight under MMaxFlex. For NMDVS, we
used 60% as the percentage. For RMDVS, we used 2x2 region size. As for IORVS, we
selected in-region step size of four and out-region step size of seven under 2x2 region
size, and in-region step size of three and out-region step size of seven under 5x5 region
size. Finally for ORMDVS, we used 60% as the percentage and in-region step size of
one under 2x2 region size.

As shown in Figure 77 and Figure 78, all the proposed approaches enhances the
performance over using a fixed step size of eight under MMaxFlex in terms of both

72



100 25+ S
e FSS/SS8 24l ——FS8S/5S8

NMDVS/80% ‘ : ’ NMDVS/60%
—— RMDVS/R2x2 2.3f| —— RMDVS/R2x2
90/ - + - IORVS/In4/Out7IRZx2 22|/ = + - IORVS/In4/Out7/R2x2
IO0RVS/In3/Out7/R5x5 IORVS/In3/Out?/R5X5
- + — ORMDVS/In1/60%/R2x2 211 = + = ORMDVS/In1/60%/R2x2

Latency (Cycles)

20 I I
0.19 0.2 0.21

0. 0.22
Flit Injection Rate (Flit/Cycle/Node) Flit Injection Rate (Flit’Cycle/Node)

; ; ; ; i
22 0.23 0.19 0.2 0.21 0.23

Figure 77: Average packet latency for ~ Figure 78: Average deflection count for
different variable step size formulas different variable step size formulas

average packet latency and average deflection count. This is due to using different step
size values for the packets instead of fixing the value for all the packets. This variability
leads to better traffic distribution thus better utilization for the bufferless NoC links.

From the figures, we note that IORVS approach achieves the least enhancement
over the fixed step size. Specifically, using 2x2 regions, the enhancement is 7.03% and
2.23% in terms of average packet latency and average deflection count respectively.
While using 5x5 regions enhances by 8.3% and 2.79% in terms of average packet
latency and average deflection count respectively. This small enhancement is due
minimum variability used in IORVS. IORVS can be seen as an update for using fixed
step size; however, instead of fixing the step size for all the packets, we use two
separate fixed values for in-region and out-region routing.

Also, observing Figure 77 and Figure 78, the performance of NMDVS, RMDVS,
and ORMDVS is almost similar with the best performance achieved by ORMDVS
using 2x2 regions. ORMDVS enhances over fixed step size under MMaxFlex by
33.28% and 8.49% in terms of average packet latency and average deflection count
respectively. The superiority of these approaches can be seen as a result of the higher
variability achieved in calculating the step size. Additionally, ORMDVS superior
enhancement is due to mixing NMDVS and IORVS. Using IORVS granted the
flexibility in separating the in-region and out-region routing. While using NMDVS
granted better distribution and variability for calculating the out-region step size.

4.4. Concluding Remarks

In this chapter, we presented the idea of varying the used step size under
MMaxFlex selection function. We started by presenting different approaches for
calculating the variable step size value. We presented approaches that used the distance
between the source and destination nodes for calculating the step size. Other
approaches divided the NoC into smaller regions and separated the in-region and out-
region routing. To test the performance of the proposed formulas, we simulated a 10x10

73



mesh. Our results showed that using any of the proposed approaches achieves better
results than using fixed step size under MMaxFlex. Specifically, one of the approaches
lead to an enhancement of 33.28% and 8.49% in terms of average packet latency and
average deflection count respectively compared with fixed step size of 8 under
MMaxFlex.

74



Chapter 5 : New Flit Ranking Policies for Deflection-
based Bufferless NoCs

In Chapter 3 and Chapter 4, we enhanced the bufferless NoC performance via
selection functions. We investigated increasing and varying the used step size under
MaxFlex as a way to enhance the links utilization which affects the performance.

In this chapter, we study the role of using different flit ranking policies on the
Bufferless NoC performance. Ranking policies determine the order by which the flits
are served. By changing the order of serving the packets/flits, the performance can
change in a drastic way.

First, we explain the importance of ranking policies and why it worth studying.
Then, we present different policies for ranking the flits. Finally, we experimentally
evaluate the proposed policies.

The chapter is organized as follows; Section 5.1 provides the motivation behind
studying ranking policies. In Section 5.2, we propose new ranking policies. Section 5.3
simulates and evaluates the proposed ranking policies. Finally, Section 5.4 concludes
the chapter.

5.1. Motivation

During the NoC operation, a 2D mesh NoC switch can receive up to five flits; four
from the ports connected to its neighboring switches, in addition to one flit injected
from the node connected to it. Each of these flits needs an output port to reach its
required destination. As a result, a conflict may arise due to different flits requiring the
same output port. In order to solve the contention between the different flits, a flit
ranking policy is used. A flit ranking policy applies a criterion to determine the order of
serving the incoming flits. In other words, it determines which flit chooses an output
port first.

Different ranking policies employ different criteria to order the flits. Subsequently,
the order of serving the flits differs leading to different arrival patterns for the NoC
flits. A good ranking policy results in a pattern that minimizes the average latency
among all the NoC packets.

In buffered NoCs, if a flit fails to get its required output port, it enters the buffer
waiting for its turn to pass. Thus, even in case of a weak ranking policy, the flit can still
wait till its shortest path is free. However, in bufferless NoC, the ranking policies have
greater effect due to the buffers elimination. If a flit fails to get its productive port, it is
deflected through a non-productive port as the links are the only buffering resource.
This unnecessary detours increase the overall packet latency.

In the next section, we propose new ranking polices and an enhancement tailored
for bufferless NoCs and MaxFlex. We evaluate the proposed approaches with two well-
known ranking policies discussed in the following sub-sections.

5.1.1. Oldest First Ranking Policy (OF)

The OF ranking policy chooses the age of the flit as its criteria. The age of the flit
is the number of cycles passed since its generation. OF ensures that there is a total age

75



order among flits and prioritizes older flits. In other words, OF tends to direct the flit
with higher age to its destination as to not increase the average latency.

At a certain cycle t, let A be a flit with age Age, and priority Priorityay. Also,
let B be a flit with age Agegy, and priority Prioritygy. If Ageny > Agegy then
Priority(ay > Priorityg .

5.1.2. Most Deflection First Ranking Policy (MDF)

MDF ranking policy chooses the deflection count of the flit as the ranking criteria.
The deflection count of the flit is number of times the flit takes a non-productive port as
its output port. MDF prioritizes the flits with more deflections. In other words, MDF
tends to direct the flit with higher deflection count to its destination as to not increase
the average latency.

Let A be a flit with deflection count Deflectionay), and priority Priority . Also,
let B be a flit with deflection count Deflectiongy, and priority Prioritygy. If
Deflection(a ) > Deflectioneg then Priority(a ) > Priorityg .

5.2. Proposed Flit Ranking Policies

Based on the results from the fixed/variable step size study in Chapter 3, and from
a recent bufferless NoC study that discusses the effect of deflections on the overall
performance [22], we propose ranking policies that tend to decrease the deflection
count of the NoC flits. The proposed policies favor the flit with more deflections as
extra detouring for this flit leads to extra delay thus increasing the overall packet
latency.

In the following sub-sections, we propose updating the Most Deflections First
(MDF) policy to use the deflection count of the flit along with its age, and the distance
between its source and destination. Also, we propose an enhancement that can work
with the any of the policies. It should be noted that even though the proposed ranking
policies in this chapter are intended for bufferless NoCs, these policies can also be
applied to buffered NoCs.

5.2.1. Deflection Age Ratio Ranking Policy (DAR)

DAR ranking policy chooses the deflection/age ratio as its criteria. DAR prioritizes
the flits with higher ratio. OF and MDF policies favor the oldest and most deflected
respectively, however, the flit may be old or deflected many times because the distance
between its source and destination is large. Thus, DAR takes into consideration both the
time the flit has been in the NoC and its deflection count. DAR favors the flits that have
suffered more deflections during its lifetime in the NoC.

Let A be a flit with age Ageny, deflection count Deflectionay, and priority
Priorityay. Also, let B be a flit with age Ageg;), and delfeciton count Deflectiony,
and priority Prioritygy. If Deflectioniay/Agenay = Deflectiongy/Agesy then
Priorityay = Prioritygy.

76



5.2.2. Deflection Distance Ratio Ranking Policy (DDR)

DDR ranking policy chooses the deflection/distance ratio as its criteria. The
distance is the Manhattan distance between the source and destination of the flit. DDR
prioritizes the flits with higher ratio. Following the same idea as in DAR, DDR favors
the flits that have suffered more deflections during the path from its source and
destination.

Let A be a flit with distance between its source and destination Distancen,
deflection count Deflectioniy, and priority Priorityny. Also, let B be a flit with
distance between its source and destination Distances, delfeciton count Deflectiong ),
and priority Prioritygy. If Deflectione/Distancea = Deflectiong/Distanceg then
Priority(ay = Priorityg.

5.2.3. Last Dimension Ranking Policy (LD)

LD is an enhancement that can work with any of the ranking schemes. It is
designed to work specifically with bufferless NoCs and MaxFlex selection function. In
case of competing flits, LD favors the flit that has hops in only one direction. In case of
a draw, LD uses other ranking policies to break the draw. For example, it two flits are
competing and one of the flits has only moves left in the X direction, while the other
still has moves in both X and Y directions, then LD favors the first flit.

The motivation behind favoring the flit stuck in one direction is that any deflection
for this flit leads to extra unnecessary detour. This detour needs at least two cycles to
correct the path of the flit. Thus, if we choose not to deflect this flit, we enhance the
overall packet latency as we decrease the overall deflection count.

Here, we present the usage of LD along with MDF and DDR ranking policies as
draw breakers.

5.3. Simulation Results

In this section, we adapt the same experimental setup used in Chapter 3 to evaluate
the approaches mentioned in the previous section. First, we present the experimental
results concerning the updated approaches DAR and DDR in contrast to the baseline
approaches OF and MDF. Then, we evaluate the LD enhancement compared with MDF
and DDR.

Figure 79 and Figure 80 compare between the presented ranking policies in terms
of average packet latency and average deflection count respectively. As shown in both
figures, all the deflection based policies have a superior performance over the OF
ranking policy in addition to operating under higher injection rates. Also, in Figure 79,
the proposed policies DAR and DDR exceed MDF performance in terms of packet
latency. That is because MDF only focus on the deflections without considering the
time spent in the NoC or the distance to be covered. DDR has the best performance in
terms of both packet latency and deflection count as it considers the shortest distance
between the source and destination of the flit. The shortest distance between the source
and destination is known and can be calculated upfront. As a result, if a flit suffered
high deflection count while travelling short distance, it is favored over the flit that was
deflected the same number of times but while travelling long distance. Thus, factoring
the distance differentiates between the two flits even though they have the same

77



Latency (Cycles)

Figure 79: Average packet latency for
different ranking policies

1001

=——MDF
DDR
=+—LD + MDF

90/ = 4 =LD +DDR

801

~
=)

601

Latency (Cycles)

50

40t

30;

20 ! L L L §
0.19 02 0.21 0.22 0.23 0.24

Flit Injection Rate (FIt/Cycle/Node)

Figure 81: Average packet latency for
LD enhancement over other ranking
policies

rage Deflection Coun

Vel

< 0.

0.1 ! | | | i
0.19 0.2 0.21 0.22 0.23 0.24

Flit Injection Rate (FIit'Cycle/Node)

Figure 80: Average deflection count for
different ranking policies

=+ MDF
DDR

== LD + MDF

=+ =LD+DDR

Average Deflection Coun

T T T T T T T T T T T T T T T T—T—1-—1

0.1 ! | | |
0.19 0.2 0.21 0.22 0.23 0.24

Flit Injecii.on Rate (Flit/Cycle/Node)

Figure 82: Average deflection count for
LD enhancement over other ranking
policies

deflection count. Also, the deflection count performance shown in Figure 80 matches

the packet latency results.

In order to show how the LD enhancement affects the performance, we simulated
LD with MDF and DDR as draw breakers. We compared LD performance in contrast
with MDF and DDR respectively. As shown in Figure 81 and Figure 82, the LD
enhancement greatly boosts the performance under higher injection rates. Specifically,
using LD along with MDF under injection rate of 0.24 flit/cycle/node enhances the
packet latency and the deflection count over MDF by 52.3% and 50.4% respectively.
While using LD along with DDR enhances the packet latency and the deflection count

over DDR by 35.6% and 46.7% respectively.



To explain this superior performance, we refer to Figure 82. As shown in Figure
82, the average deflection count for LD along with either MDF or DDR dramatically
decreases as LD removes any unnecessary detours for the flits. Decreasing the
deflection count for the flits directly affects the overall packet latency.

5.4. Concluding Remarks

In this chapter, we presented new deflection-based flit ranking policies. We first
explained how bufferless NoCs are more affected by flit ranking polices more than
buffered NoCs. Also, we explained the idea behind choosing the deflection count as our
criterion. Then, we updated the MDF ranking policy by incorporating the age and the
distance between the flit’s source and destination along with the deflection count. In
addition to updating MDF ranking policy, we proposed the LD enhancement that can
be used along with other ranking policies to decrease the deflection count and hence
improve the performance. Finally, we provided an experimental study for the proposed
polices and the enhancement on a 10x10 mesh versus other well-known ranking
polices.

79



Chapter 6 : Time-Sensitive Congestion Management
Mechanisms

In the previous chapters, we investigated the use of output port selection functions
and flit ranking policies to enhance the bufferless NoC performance. However, none of
the proposed approaches directly targets the main roadblock facing bufferless NoC,
namely the congestion problem.

In this chapter, we investigate the role of using proper congestion management
mechanisms on bufferless NoC performance. Congestion can quickly develop under
bufferless NoCs due to the lack of buffers. By managing the congestion, the
performance is boosted in a drastic way.

First, we explain the importance of congestion management and why we choose
the prevention approach. Then, we present different congestion prevention
mechanisms. Finally, we simulate and evaluate the proposed approaches.

The chapter is organized as follows; Section 6.1 discusses the importance of
managing the congestion specifically in bufferless NoCs. In Section 6.2, we propose
two different prevention mechanisms. The updated experimental setup and the
experimental results are presented and discussed in Section 6.3. Finally, Section 6.5
concludes the chapter.

6.1. Motivation

Due to lack of buffers, congestion can quickly develop in bufferless NoC
preventing it from competing with the buffered NoCs performance especially under
high injection rates. As mentioned earlier, combining high injection rate with the
deflection behavior of the bufferless NoC leads to increased traffic volume which
results in more contention between the flits. As the contention increases, the deflection
rates increases and the starvation at the source nodes also increases (the source nodes
are not able to inject new flits). This leads to a collapse in the performance of the NoC.

Various approaches exist for managing the NoC congestion. These approaches falls
under one of two categories: detect and control the congestion, or prevent the
congestion from developing. The first category approaches apply heuristics and monitor
the NoC performance to detect the congestion once it arises. If congestion is detected,
these approaches apply a control mechanism to relieve the congested areas. The
problem with the first category approaches is that if the heuristics used to monitor the
performance or the actions taken to relieve the congestion are biased or excessive, the
overall performance of the system is affected.

On the other hand, the prevention approaches uses extra resources to decrease the
probability of developing the congestion. The idea is to use the extra resources to
provide other options for the flits in case of contention under high traffic volume. For
example, a buffered NoC can use extra buffers to host the flits in case of increased
traffic volume. In bufferless NoCs, we don’t have the luxury of using buffers, so we
investigate how to prevent the congestion with the only buffering resource available i.e.
the NoC links.

80



i \‘__/ \‘__/ \‘__/ \
\ / \ / \ / \ /
\ / \ / \ / \ /
L | T
-~ ~
4 \
/ =
\ I
AN /
~ ~
T
1
- ~
4 \
f [
\ /
N /
\T/
RS
4 \
/ L
\ I
AN /

Figure 83: Using 4x4 mesh instead of 3x3 mesh

6.2. Proposed Approaches

In this section, we investigate how to relieve the traffic volume under bufferless
NoC thus preventing the congestion from developing in the first place. Our goal is to
operate latency-sensitive applications on bufferless NoCs under high injection rates
without inducing extra power or chip area usage.

To be able to do that, we provide more links bandwidth to the flits so that they
have more freedom in their movement towards their destinations. We propose two
mechanisms to achieve this freedom. The first approach runs the application mix on
larger NoCs, while the second approach divides the application mix to smaller subsets
to be run sequentially.

6.2.1. Using Larger NoCs (LNoC)

In the LNoC approach, we propose running the application mix on a larger NoC
with more nodes, switches, and links. For example, as in Figure 83, instead of running
the application mix on a 3x3 mesh, we run it on a 4x4 mesh. Specifically, instead of
running a given application mix on an n X m mesh and quickly reach congestion at
injection rate Ry, we run the same application mix on k X [ mesh and operate under
injection rate R, wheren X m < k X land R; < R,.

The idea behind LNoC is to take advantage of the extra links provided as a result
of using the larger NoC thus providing extra space for the flits to move with less
competition with the other flits. Figure 83 shows the extra nodes (switches) and links as
dotted circles and line respectively.

6.2.2. Using Sequential Injection (SI)

In the SI approach, we propose dividing the application mix into smaller subsets
where only a subset of the NoC nodes is allowed to inject it. Then, instead of running

81



Phase 1

//—\ RS ~ ~ /—\\\
I/'/ \ // \ // \ f/ \

I I | \

/ \ / \ I \ /
\ / AN / AN / AN /
\\T/ \_I_/ \_I_/ \T//
4 )
- J

Phase 2

Figure 84: Example of two phase sequential injection

and injecting all the applications traffic at the same run, we divide the injection into
sequential runs. In other words, we run the smaller application subsets sequentially on
the whole NoC. Figure 84 shows an example for two phase injection. In the example,
four nodes inject their traffic during the first phase. After receiving phase one injected
traffic, the rest of the nodes (twelve nodes) inject their traffic into the NoC.

By doing that, we basically divide the problem of running the given application
mix to a group of smaller application mixes that we can run in sequence. The smaller
application mix, which results in smaller traffic volume, in combination with the
sequential operation leads to injecting less data into the NoC in each smaller run which
directly affects the deflection count and the packet latency in a positive way.

6.3. Simulation Results

In this section, we adapt the same experimental setup in Chapter 3; however, we
change the termination condition for each run. We simulate a 10x10 mesh; however,
instead of having a warm-up period of 100,000 cycles, and termination after receiving
1000,000 packets, we remove the warm-up period, inject 10,000 packets per node and
terminates when all these packets are received.

We evaluate each of the proposed prevention mechanisms separately. We start by
evaluating the LNoC approach in two ways. First, we compare the performance of
running fifteen nodes in different mesh sizes, specifically, 3x5 mesh, 5x3 mesh, and
4x4 mesh with one extra node (switch). Second, we evaluate the effect of placing the
extra nodes by simulating 10x10 mesh and change the number and the position of the
extra nodes (switches). Concerning the SI approach evaluation, we simulate 10x10
mesh to study the effect of the number of nodes in each phase and their position in the
NoC.

82



1001 1 s
e 3x5 Mesh == 3x5 Mesh

5x3 Mesh : : : : : 5x3 Mesh
=== 4x4 Mesh . . 0.9 H =+—4x4 Mesh

90

80

Latency (Cycles)

Average Deflection Count

i i i i i ; i i i i i i
04 0.41 0.42 0.43 0.44 045 0.46 0.4 0.41 0.42 0.43 0.44 0.45 0.46
Flit Injection Rate (Flit/Cycle/Node) Flit Injection Rate (Flit’Cycle/Node)

Figure 85: Average packet latency for ~ Figure 86: Average deflection count for
fifteen nodes in different mesh sizes fifteen nodes in different mesh sizes

To evaluate the LNoC approach, we considered an application that uses fifteen
nodes only and we arrange the nodes in three different mesh sizes: 3x5 mesh, 5x3
mesh, and 4x4 mesh with one extra node. We used MMaxFlex with step size of one to
study the effect of using different arrangements and extra node(s). As shown in Figure
85 and Figure 86, using 4x4 mesh resulted in better performance in both average packet
latency and average deflection count. The enhancement is accounted for the use of
extra node (switch) and the links connected to it which provided extra freedom for the
flits to reach their destinations. Specifically, using an extra node instead of the required
fifteen nodes in 3x5 mesh enhances the average packet latency and the average
deflection count at flit injection rate 0.48 flit/cycle/node by 98.85% and 31.07%
respectively. Also, from both figures, we notice that using 3x5 mesh is better that using
5x3 mesh in both performance metrics. This is due to the default behavior of MaxFlex,
namely, moving on X-dimension first then on Y-dimension. Thus, as the number of
columns in 5x3 mesh is less than the number of columns in 3x5 mesh (three versus
five), the flits have more freedom to move in the X-dimension in case of 3x5 mesh than
in case of 5x3 mesh.

The previous experiment did not study the number of the extra nodes used and
their placement in the NoC, so we simulated 10x10 mesh and varied the number of
extra nodes and changed their location from border nodes to central nodes. We
compared using all the nodes in 10x10 mesh with the following: 90 nodes with 10 extra
nodes placed as border nodes, 90 nodes with 10 extra nodes placed as central (core)
nodes, 80 nodes with 20 extras nodes as central nodes, and 50 nodes with 50 extra
nodes placed in the even columns of the 10x10 mesh. All of the previous experiments
were simulated under MMaxFlex with step size of eight.

As shown in Figure 87 and Figure 88, using any extra nodes enhanced the
performance over using all the 10x10 mesh nodes. This is also a result of the extra
space provided for the flits in case of using extra nodes. For example, using only 90
nodes for injecting traffic instead of the provided 100 nodes leaves 10 switches in
addition to their links to help in forwarding the traffic. The extra links works as extra
roads for the flits to move.

83



= No Extra | ==& No Extra

10 Extra - Border : : 19 10 Extra - Border
—+— 10 Extra - Core 1.8 ==+ 10 Extra - Core
907 = 4 = 20 Extra - Core ' 17| =+ = 20 Extra - Core
50 Extra . 50 Extra

80

701

60

Latency (Cycles)
Latency (Cycles)

50

I I i I j L i I ]
0.19 0.2 0.21 0.22 0.23 0.24 018 0.2 0.23 0.24

Flit Injection Rate (Flit/Cycle/Node)

0.21 0.22
Flit Injection Rate (Flit/Cycle/Node)

Figure 87: Average packet latency for ~ Figure 88: Average deflection count for
different number of extra nodes in different number of extra nodes in
different locations in 10x10 mesh different locations in 10x10 mesh

Also, Figure 87 and Figure 88 presented the effect of the number of extra nodes
and their placement. As the number of extra nodes increases, both the average packet
latency and the average deflection count decreases. This is because using more extra
nodes leads to more space for the flits to reach their destination. Concerning the
placement of the extra nodes, Figure 87 and Figure 88 shows the difference between
using 10 extra nodes placed on the border of the NoC and using 10 extra nodes placed
in the center of the NoC. As in both figures, placing the extra nodes in the center of the
NoC enhanced the performance over placing them on the border in terms of average
packet latency, average deflection count, and the flit injection rate. The enhancement is
due to the fact that the central switches are responsible for more traffic forwarding and
handling than the border switches, thus placing the extra nodes in the center frees the
central switches for forwarding only and leaves the injection for the rest of the nodes.

Concerning the Sl approach evaluation, we used two phase sequential injection
with different number of nodes at each phase. Also, we changed the location of the
nodes in each phase to study the effect of the nodes placement. By two phase sequential
injection, we mean that we divide the NoC nodes into two groups that take turn in
injecting their traffic. For evaluation, we compared injecting the traffic from all the
nodes in 10x10 mesh as one phase with the following: two phase with 90 nodes in the
first phase and 10 nodes placed as border nodes in the second phase, two phase with 90
nodes in the first phase and 10 nodes placed as central nodes in the second phase, and
two phase with 80 nodes in the first phase and 20 nodes placed as central nodes in the
second phase. All of the previous experiments were simulated under MMaxFlex with
step size of eight.

As shown in Figure 89 and Figure 90, using two phase Sl injection enhances the
performance over using one phase injection in terms of the used performance metrics.
Specifically, in Figure 90, the average deflection count decreases as ratio between the
number of nodes in each phase increases. This can be explained as in LNoC approach,
namely, dividing the nodes evenly between the phases lead to less nodes injecting in
each phase which lead to less competition between the flits, hence less deflections. As
for the packet latency, increasing the ratio between the number of nodes in each phase

84



=1 Phase 197—|—1Phase
2 Phase - 10 Border/90 ] : : 2 Phase - 10 Border/90
—+— 2 Phase - 10 Core/90 1.8 =2 Phase - 10 Core/90
9011 - 4 - 2 Phase - 20 Core/80 ' - 4 =2 Phase - 20 Core/80

80

701

60

Latency (Cycles)
Latency (Cycles)

50

401

20 i i i i ] i i ]
‘018 02 0.21 0.22 0.23 0.24 0.19 0.2 0.23 0.24

. . 0.21 0.22
Flit Injection Rate (Flit/Cycle/Node) Flit Injection Rate (Flit’/Cycle/Node)

Figure 89: Average packet latency for ~ Figure 90: Average deflection count for
two phase Sl using different number of  two phase Sl using different number of
nodes in different locations in 10x10 nodes in different locations in 10x10
mesh mesh

resulted in better average latency and achieves higher flit injection rates as shown in
Figure 89.

As for the nodes placement, changing the location of nodes from the border of the
NoC to the center of the NoC decreased the average packet latency and the average
deflection count by 98.36% and 32.2% respectively. This enhancement is accounted to
the same reasons as in LNoC. Specifically, the central switches forward and handle
more traffic than the border switches, thus separating the center nodes injection in
different phase frees the center of the NoC to only forward the traffic of the rest of the
nodes.

6.4. Concluding Remarks

In this chapter, we presented the idea of using proper congestion prevention
mechanisms in bufferless NoCs. Also, we presented two prevention mechanisms,
LNoC and SI, and idea behind each of them. Each of the two approaches provided more
space for the flits to move in the NoC thus less contention between the flits. To test the
performance of the proposed approaches, we simulated a 10x10 mesh. Our results
showed that our proposed mechanisms resulted in better performance in terms of both
average packet latency and average deflection count compared with fixed step size of 8
under MMaxFlex.

85



Chapter 7 : Discussion and Conclusion

In this thesis, we were concerned with pushing the boundaries of using bufferless
NoCs. In other words, how bufferless NoCs can achieve a performance, packet latency
and deflection count, similar to buffered NoCs under higher injection rates but with the
added benefit of less power and area. We first focused on using the selection functions
to achieve our goal. Specifically, we investigated using larger and variable step sizes
under MaxFlex selection function to enhance the traffic distribution and hence the
performance. Our analytical and experimental work showed that using larger step size
values led to better performance figures. Also, using variable step size for each packet
instead of fixing the value for all packets led to better traffic distribution which resulted
in enhanced performance. Then, we shifted to investigate the usage of different ranking
policies under MaxFlex to boost the performance enhancement. We tailored our
proposed policies to focus on decreasing the flits’ deflections as enhancing the
deflection count should result in better packet latency. Finally, we looked into easing
the congestion problem in bufferless NoCs. We wanted to prevent the congestion
instead of detecting and controlling it later. Our prevention mechanisms allowed the
flits to have more link bandwidth while moving to their destinations. We achieved that
by using extra resources and/or organizing the injection of the running latency-sensitive
applications. Our work in this part showed a huge enhancement in both the packet
latency and the deflection count.

7.1. Future Work

We can extend our work in different directions. First, we can investigate the proper
size for the regions based on the overall NoC size as we only investigated the usage of
regions in determining the variable step size value. Also, we can look into other
formulas to determine the variable step size. Additionally, the concept of dividing the
NoC into regions can be extended to other aspects in NoC not only for the variable step
size. For example, regions can be used to enhance the performance on the application
level by assigning different applications to different regions and based on each
application we can customize each region. Second, we can extend our congestion
mechanisms to consider throughput-sensitive applications like GPGPUs in addition to
latency-sensitive applications. Finally, we want to investigate the effect of absorbing
and re-injecting the NoC traffic via “Sink Nodes” as an approach to ease congestion
instead of using source throttling as most of the presented work in the literature
proposed.

Beside the proposed extensions, we can investigate the bufferless NoCs usage in
other hot topics. One of the current hot topics related to NoCs is the usage of die
stacking technologies to incorporate memory stacks inside the chip. Currently, instead
of using 3D stacking, researchers are investigating the usage of 2.5D stacking i.e.
silicon interposer. In 2.5D stacking, instead of adding the memory or other processor
die on the top of the base processor die, the silicon interposer is built to be large enough
to hold the processor die and the memory stacks surrounding the die. The interposer is a
layer rich in communication resources which can be harvested to connect several
components in the chip with extra cost. Recent works proposed the usage of the silicon
interposer instead of 3D stacking. The 2.5D stacking presents several challenges in

86



designing the NoC to support the higher memory bandwidth required. We can look into
using the bufferless NoC in the design to harvest the underlying rich interposer without
the need to add extra buffers. Also, both 3D and 2.5D technologies can be investigated
to see how using the bufferless NoC can enhance the overall design.

Also, recent works investigated the usage of random topologies for NoCs. They
showed that random topologies provide better scalability in terms of network diameter
and provide inherent load balancing. We can look into using the bufferless NoC design
with these random topologies.

87



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

References

L. Benini and G.De. Micheli, "Networks on Chips: A New SoC Paradigm," Computer, pp.
70-78, 2002.

W. J. Dally and B. Towles, "Route Packets, Not Wires: On-Chip Interconnection Networks,"
in Design Automation Conference, Las Vegas, 2001, pp. 684-689.

J. Duato, S. Yalamanchili, and L. Ni, Interconnection Networks: An Engineering Approach.
San Francisco, California: Morgan Kaufmann, 2002.

W. J. Dally and B. Towles, Principles and Practices of Interconnection Networks. San
Francisco, California: Morgan Kaufmann, 2003.

S.R. Vangal et al., "An 80-Tile Sub-100-W TeraFLOPS Processor in 65-nm CMOS," IEEE
Journal of Solid-State Circuits, pp. 29-41, 2008.

M.B. Taylor et al., "Evaluation of the Raw Microprocessor: An Exposed-Wire-Delay
Architecture for ILP and Streams," in International Symposium on Computer Architecture,
Munich, 2004, pp. 2-13.

Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, "A 5-GHz Mesh Interconnect for
a TeraFLOPS Processor," in International Symposium on Microarchitecture, Chicago, 2007,
pp. 51-61.

P. Gratz, C. Kim, R. McDonald, S.W. Keckler, and D. Burger, "Implementation and
Evaluation of On-Chip Network Architectures," in International Conference on Computer
Design, San Jose, 2006, pp. 477-484.

C. Gimez, M. E. Gomez, P. Lépez, and J. Duato, "Reducing Packet Dropping in a Bufferless
NoC," in International European Conference on Parallel and Distributed Computing, Las
Palmas de Gran Canaria, 2008, pp. 899-909.

[10] T. Moscibroda and O. Mutlu, "A Case for Bufferless Routing in On-Chip Networks," in

International Symposium on Computer Architecture, Austin, 2009, pp. 196-207.

[11] M. Hayenga, N.E. Jerger, and M. Lipasti, "SCARAB: A Single Cycle Adaptive Routing and

Bufferless Network," in International Symposium on Microarchitecture, New York, 2009,
pp. 244-254.

[12] G. Michelogiannakis, D. Sanchez, W.J. Dally, and C. Kozyrakis, "Evaluating Bufferless Flow

Control for On-Chip Networks," in ACM/IEEE International Symposium on Networks-on-

Chip, Grenoble, 2010, pp. 9-16.

88



[13] S. Badr and P. Podar, "An Optimal Shortest-Path Routing Policy for Network Computers
with Regular Mesh-Connected Topologies," IEEE Transactions on Computers, pp. 1362-
1371, 1989.

[14] W. J. Dally and H. Aoki, "Deadlock-Free Adaptive Routing in Multicomputer Networks
Using Virtual Channels," IEEE Transactions on Parallel and Distributed Systems, pp. 466-
475, 1993.

[15] C. Gomez, M. E. Gomez, P. Lopez, and J. Duato, "BPS: A Bufferless Switching Technique
for NoCs," in Workshop on Interconnection Network Architectures, 2008, pp. 1-6.

[16] A. Lankes, T. Wild, S. Wallentowitz, and A. Herkersdorf, "Benefits of Selective Packet
Discard in Networks-on-Chip," ACM Transactions on Architecture and Code Optimization,
2012.

[17] ). Lin, X. Lin, and L. Tang, "Making-a-Stop: A New Bufferless Routing Algorithm for On-
Chip Network," Journal of Parallel and Distributed Computing, pp. 515-524, 2012.

[18] C. Fallin, C. Craik, and O. Mutlu, "CHIPPER: A Low-complexity Bufferless Deflection
Router," in International Symposium on High Performance Computer Architecture, San
Antonio, 2011, pp. 144 - 155.

[19] S.A.R. Jafri, Yu-Ju Hong, M. Thottethodi, and T.N. Vijaykumar, "Adaptive Flow Control for
Robust Performance and Energy," in International Symposium on Microarchitecture,
Atlanta, 2010, pp. 433 - 444.

[20] C. Fallin et al., "MinBD: Minimally-Buffered Deflection Routing for Energy-Efficient
Interconnect," in International Symposium on Networks-on-Chip, Lyngby, 2012, pp. 1 - 10.

[21] J., Nayak, B. Jose, K. Kumar, and M. Mutyam, "DeBAR: Deflection Based Adaptive Router
With Minimal Buffering," in Conference on Design, Automation and Test in Europe,
Grenoble, 2013, pp. 1583 - 1588.

[22] Y. Li, K. Mei, Y. Liu, N. Zheng, and Y. Xu, "LDBR: Low-Deflection Bufferless Router for Cost-
Sensitive Network-on-Chip Design," Microprocessors and Microsystems, vol. 38, no. 7, pp.
669-680, October 2014.

[23] T. Weller and B. Hajek, "Comments on "An Optimal Shortest-Path Routing Policy for
Network Computers with Regular Mesh-Connected Topologies"," IEEE Transactions on
Computers, pp. 862-863, 1994.

[24] W. Feng and K. Shin, "Impact of Selection Functions on Routing Algorithm Performance in
Multicomputer Networks," in International Conference on Supercomputing, Vienna, 1997,
pp. 132-139.

[25] M. Koibuchi, A. Jouraku, and H. Amano, "MMLRU Selection Function: A Simple and

89



Efficient Output Selection Function in Adaptive Routing," IEICE Transactions, pp. 109-118,
2005.

[26] F. Gilabert, M. E. Gémez, P. Lopez, and J. Duato, "On the Influence of the Selection
Function on the Performance of Fat-trees," in International European Conference on
Parallel and Distributed Computing, Dresden, 2006, pp. 864-873.

[27] A. Farouk and H.M. El-Boghdadi, "On the Influence of Selection Function on the
Performance of Fat-Trees under Hot-Spot Traffic," in IEEE/ACS International Conference
on Computer Systems and Applications, Sharm El-Sheikh, 2011, pp. 120-127.

[28] A. Farouk and H.M. El-Boghdadi, "A Cost-efficient Congestion Management Methodology
for Fat-trees using Traffic Pattern Detection," The Journal of Supercomputing, vol. 71, no.
4, pp. 1249 - 1276, April 2015.

[29] ). Jose, B. M. Jacob, and H. P. Kamal, "An Energy Efficient Load Balancing Selection
Strategy for Adaptive NoC Routers," in International Workshop on Network on Chip
Architectures, Cambridge, 2014, pp. 31 - 36.

[30] Z. Lu, M. Zhong, and A. Jantsch, "Evaluation of On-Chip Networks using Deflection
Routing," in Great Lakes Symposium on VLS|, Philadelphia, 2006, pp. 296 - 301.

[31] G. Nychis, C. Fallin, T. Moscibroda, and O. Mutlu, "Next Generation On-Chip Networks:
What Kind of Congestion Control Do We Need?," in Workshop on Hot Topics in Networks,
Monterey, 2010.

[32] R. Ausavarungnirun, K. K.-W. Chang, C. Fallin, and O. Mutlu, "Adaptive Cluster Throttling:
Improving High-Load Performance in Bufferless On-Chip Networks," Computer
Architecture Lab (CALCM) Carnegie Mellon University, SAFARI Technical Report 6, 2011.

[33] K. K.-W. Chang, R. Ausavarungnirun, C. Fallin, and O. Mutlu, "HAT: Heterogeneous
Adaptive Throttling for On-Chip Networks," in International Symposium on Computer
Architecture and High Performance Computing, New York, 2012, pp. 9 - 18.

[34] J. Yan, G. Lai, and X. Lin, "A Novel Distributed Congestion Control for Bufferless Network-
on-Chip," The Journal of Supercomputing, vol. 68, no. 2, pp. 849 - 866, May 2014.

[35] Tilera Corporation. Tilera announces the world’s first 100-core processor with the new
tile-gx family. [Online].
http://www.tilera.com/news & events/press release 091026.php

[36] D. Wentzlaff et al.,, "On-Chip Interconnection Architecture of the Tile Processor," in
International Symposium on Microarchitecture, Chicago, 2007, pp. 15 - 31.

[37] Intel Corporation. Single-Chip Cloud Computer. [Online].
http://techresearch.intel.com/articles/

90


http://www.tilera.com/news_&_events/press_release_091026.php
http://techresearch.intel.com/articles/

[38] M. Taylor, J. Kim, J. Miller, and D. Wentzlaff, "The Raw Microprocessor: A Computational

Fabric for Software Circuits and General-Purpose Programs," in International Symposium
on Microarchitecture, Istanbul, 2002, pp. 25 - 35.

[39] H. Hossain, M. Ahmed, A. Al-Nayeem, T.Z. Islam, and M.M. Akbar, "gpNoCsim - A General
Purpose Simulator for Network-on-Chip," in International Conference on Information and
Communication Technology, Dhaka, 2007, pp. 254-257. [Online].
http://www.buet.ac.bd/cse/research/group/noc/index.htm

91


http://www.buet.ac.bd/cse/research/group/noc/index.htm

Appendix A: 2D Mesh Terminologies

In this appendix, we explain the concept of main diagonal, and how to differentiate
between the increasing and decreasing diagonals in n X n mesh. Also, we explain how
to determine if a certain node is above or below the main diagonal.

N
P1/ (34)

Figure 91: Main increasing and decreasing diagonals in 5x5 mesh

We start by defining the main diagonal concept in n X n mesh. The main diagonal
is the longest diagonal in a given n X n mesh. In other words, it is the diagonal with n
nodes on it. All other diagonals in n X n mesh contains less than n nodes. Figure 91
shows an example of main diagonals in 5x5 mesh.

Also, we differentiate between increasing and decreasing diagonals in n X n mesh.
Figure 91 shows both of the diagonal types. In the decreasing diagonal, both the X and
Y indices increases for each node along the diagonal. In contrast, the X index increases
while the Y index decreases for each node along the increasing diagonal. A typical 2D
mesh node belongs to an increasing diagonal as well as a decreasing diagonal but not
necessarily of same size. For example, node P3 in Figure 91 belongs to the main
decreasing diagonal and to an increasing diagonal with three nodes.

To determine if a node is above or below the main diagonal, we study the slope of
a virtual line on which the node lays. Also, we shall differentiate between the
increasing and decreasing diagonal cases. For example, in Figure 91, to determine if
nodes P1 and P2 are above the main decreasing diagonal, we compare between the
slopes of lines AD and AP1, and AP2.

5—-1
ADSlope = =

—=1
5-1

92



4-1

APlSlope == STl == 15
3—1

APZSlope = m == 067

Since AP1gope > ADgope, then node P1 is below the main decreasing diagonal
(i.e. line AD). Also, since AP2g5pe < ADgjope, then node P2 is above the main
decreasing diagonal.

Also, we can use the node X and Y indices to determine if a node is above or below
the main diagonal. As in the previous method, we differentiate between increasing and
decreasing diagonals. Figure 91 shows the nodes indices in both (X,Y) and (X,n + 1 —
Y) formats. For the decreasing diagonal, if X <Y, then the node is below the main
decreasing diagonal; else the node is above the main decreasing diagonal. For the
increasing diagonal, X >n+1—Y, then the node is below the main increasing
diagonal; else the node is above the main increasing diagonal. For example, node
P1(X =3,Y =4) has X <Y, then node P1 is below the main decreasing diagonal.
Also, node P3(X =2,n+1—-Y =4) has X <n+ 1 -Y, then the node is above the
main increasing diagonal.

93



Publications

[1] M. A. Abd EIMohsen and H. M. EI-Boghdadi, "Investigating the Viability of
Maximum Flexibility Selection Function in Bufferless 2D Meshes,” in
International Workshop on Many-core Embedded Systems, Portland, 2015, pp.
52-55.

94



uadlall

Gatl) aganll a0 A8l e—auil) ey cclallad) saaie AalalY) Jpas aa
Sl el 288, le—aKuall ol asy oS8 5 L aaa) Al 2, Jaly Jladl]
A8l - -3l ¢pels cAalially 48U eDigiul o aall Ja< L4806 dalial 5 45U
o agl axind (A pealic R4 Sl A8l -l cll) JARa Sl
Ayal) Talia) aladiuls 4 gl zlae o Gl aa Jalamig e b oSl Sl 5 il
e el G s Aaall Slue s ) A8 (e

Sl Ay -l o gmes e 35 oad dagkY) el b
s Gailiiy Joasll s Cgl) adss Gk e cigl Luliall @y clankall 4553%
s dong ol laal € Yl jslae DB e S5 Aag kY s 25 L clihaiy)
i€ aal amg zae Qo ol Ala 8 bl s cnp e sl Lol
L) i (385 Jaee iyl Jla 8 3K 8 AlaaiV] Caids

A A2l Al e e 5ok SUL a3a ams lie LAY Al i Yl
Slo dand @Y Al Aigall ld Zaphll oda addiud . Aeddiod) sshall ymie o ALl
s Jse Al bt Auh s cgiall 1 8 bl aiad Aabdl @hlady) sal;
e o SULal ia apa i z)lae s Al A5A% Sl 86y oAl b bl
As o e 4l SLaal) il Ll LAeriiaall Boladll i ad Aladiul Lg ) o
angill 2lae ol A5lae 797 dawsy bl aia Jgay iy paddd (S dyhadll
Aol Al (35 peaa s Aedall Aabldatl) Al | sk (S

Aedhail sae st e 35 3 bl ais Ak Ganl Al (3yh ok Lils
Aoty Ll aia Jgeas @y e JE O oSa Golal) s of B8l mil ai
Y] laal Aulu A)lke 158 ) duss

G Jae g lin) b 8 3 8 Al il e Cantnll Lialaia) angs Jpal
e clinlall duntnl il sl g 5 plan¥) il wial gugbal 5 bl o5a
Jla¥l e Aludud Aariall bl aia sy AW Aaylall L Ldloa) 3lse aladinly 40
Jot Lansiy bl aia Jsems iy 33a0 Aagitall (3ylall o slSlaall il ity L c2aY)
LUl aia 33N Jaee ad) ) ALYl 761 )



bl Gunall e psle a2 Fudiga
1988\07\07 Dl e,

Sran sdaial)

2010\10\01 : Jaal) o
2016\....\.... sqial) gy

Glaalal) Auaia : i)

aslal) yials sl

@dard) dsans Hla Lo 10 58 pual)

(o)) paiadl) vadlae (S5ag .o 1O siatiaal)
SOV daals - Aigh) A A -

(A3 ciadl) Juas cpdll Bla spae 2.0
(ol Capial) (salaad) dgana aila .o
(Al olgis
RS Sl A8 - el elaf cpuas e

A1 calalsyy
s i Gl Aigpe D LA Aiyla camgill e lidl dapla ARG e A8l Je—ASus
Y g el elild

Ayl padla
daly Juadll (gl agenll < A8l e~ iy cclalled) saaie Al Jsias ae
JaS a0 dalisdd 5 dalall bl LSl 486, e—3Sull elal any oK1 5 L 380 llaall 433,
a3y le—AKusl clly) AR Sl 386y oA el dAaliadlly 28U oDlgtal e 2all
ot ) A e Baad) Tl pladiul an gl zilde Glo Gl e Jalatis oAl pealic 33334
a8l oAl el et e 365 ot dag kYl sda b jlue el el Rajall e

LlihatY) axe (auliiy Jpasll aPU) gl padis b e A5G Sl
ang e RS A AR Sl A8, Jle—AKutl) B asall g se Al Ablat Al a3k oYl
Lirs e 4l S Ol s L Aeadisa) sshaal] Aabide ad aladiuls Dgyall e e % ajal)
A L asiine (< dpagll #olae Lol Alie 797 Ay aiall Jseay Cy (muids (Ko 3shall
o 3 A aial) Aes gl Adhie Gyl pa Ll A el FI) (358 st Aeskal) Ll
Gy piall Jymay s ga i O (e Golall s o BISIaall il (us 5 Lgdhadl ae (auis
A 8 alaay¥) il e canianll ialaia) angs hyal 5 a8Y) lidl) Al 35lke 758 Y Joss
Cliadall Joal Aanla sl g 5 ala ) il il sl =5 a5all (385 Jaee pli)) I
Oaig «dY) Jlea¥l (e Alidud A8l el aud A0 Zaylall L Adli) 3lse pladiul A< e

coal (385 Jane gy (M ALRYL caiall Jgems s 55a Aagia) @il of slSlaall il



4534 el 486 )0 e -Aual ool et e

Alae

ad) il el de anale a2

5 ALl ala - nigh AS Yl e AL
polall fvale da yo o J seanll Glallia (g ¢ 28

*
Slualall At

FOmiatiaal) Aad e diag

ot Vo piall I3 3 sana a1y S
3l daals - dangd) A M) -

SR il Jias oyl Pla 5 e * 580l
5ol daals - Alaigh A aeliee ) -

DAY daala - digl) A Ml -

5 5 Al Fadla - A uigll 3K
A yadl juan i) sgan - 3 5l
2016



4534 el 486 )0 e -Aual ool et e

Alae

ad) il el de anale a2

5 ALl Gl - Aigll BS Y] Faie Alla
polall yivale da jo e Jpeanll Glillia (g ¢ 528

*
Slualall At

) 3 gana Qa2
R\
Glalall duaia aul
3 yalal) dadla daigll 4IS

5 Al Hnala - duigl) A
A padl juas i) sgan - 3 5l
2016



Gy

4534 Ppall 486 - e -Aual ool et e

Alac

pd) ) sl 2o aale a2

5 alal) Aaala - Lutigh) A0 1) dadia Al
aslall pivale da o e Jgeaal) cilillaia (ge 5 3aS

T
Gluslall) dasa

5 Al Laala - gl A
A2l jwas Ao ) sean - 33l
2016



