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Summary:  
     With the arrival of chip multiprocessor systems, Network-on-Chip (NoC) has started to 

form the backbone of communication within a microprocessor chip. However, unfortunately, 

the performance of NoC is bounded by the limited power and area budgets. Bufferless NoC has 

emerged as a solution to reduce power and area. Bufferless NoC eliminates the buffers used for 

routing and/or flow control and handle contention using packet dropping or packet deflection. 

In this thesis, we focus on enhancing the performance (latency and deflection count) of 

deflection-based bufferless NoC running latency-sensitive applications.  

     First, we present an analytical study for the traffic in bufferless NoC under the Maximum 

Flexibility (MaxFlex) selection function with different step sizes. We also provide an 

experimental study under MaxFlex. Simulation results show that with large values of step size, 

the latency could be reduced by 97% over using Straight Line selection function. The 

proposed analysis explains the outperforming experimental results.  

     Then we propose different flit ranking policies that focus on decreasing the deflection count 
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     Finally, we consider relaxing the effect of congestion in bufferless NoC under high injection 

rate. We propose two approaches for congestion prevention. The first considers running 
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sequence of lighter loads. Simulation results show that the proposed approaches enhance the 

latency by up to 61% in addition to operating at higher injections rates. 
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Abstract 

Network-on-Chip (NoC) is commonly used to connect different computing 

components. With the arrival of chip multiprocessor systems, NoC has started to form 

the backbone of communication between cores and memory within a microprocessor 

chip. Although NoC has started to form the backbone of communication between cores, 

the performance of such interconnection network is bounded by the limited power and 

area budgets. Bufferless NoC has emerged as a solution to reduce power and area. 

Bufferless NoC eliminates the buffers used for routing or flow control and handle 

contention using packet dropping or packet deflection.  

We focus on enhancing the performance (in particular, packet latency and 

deflection count) of deflection-based bufferless NoC running latency-sensitive 

applications. We divide the work to focus on three aspects of NoC. First, we focus on 

selecting an output port for the outgoing packet. After that, we shift our focus to 

ranking the flits in order to select which one to serve first. Finally, we investigate 

relaxing the effect of congestion under high injection rate. 

In the first part, we study the effect of Maximum Flexibility selection function 

(MaxFlex) on 2D bufferless meshes when a fixed or a variable step size is used. The 

selection function selects an output channel from a set of channels supplied by the 

routing function. MaxFlex is a well-known selection function that tries to maximize the 

number of routing choices as a packet approaches its destination. We investigate the 

distribution of packets through the NoC via increasing and/or varying the used step size 

as improving the distribution leads to better utilization and thus better performance. 

Simulation results show that using a larger step size can enhance the performance by up 

to 95% compared to using Straight Line selection function. Also, the results show that 

using variable step size enhances the performance compared to fixed step size by up to 

29 %. 

Concerning the second part, we devise and evaluate different flit ranking policies. 

A flit ranking policy chooses which flit should be served first, thus it determines which 

flit can select an output port first. In this work, we propose novel ranking policies that 

take the deflection behavior of the bufferless NoC into account. Via the experimental 

study, we compare these policies to the Oldest First (OF) ranking policy. Simulation 

results show that the performance of the proposed policies excels over fixed step size 

MaxFlex with OF as ranking policy by up to 58%.  

Finally, we focus on congestion prevention for bufferless NoC running latency-

sensitive applications. NoC congestion is one of the main roadblocks that prevent the 

bufferless NoC to operate under high injection rates. Thus, by relaxing the congestion, 

bufferless NoCs can approach the performance of buffered NoCs but without the extra 

cost of using buffers (power and area). To address this problem, we propose prevention 

mechanisms that target the deflection count of the flits. The proposed approaches aim 

to give more space for the flits to roam leading to fewer deflections which directly 

affects the overall packet latency. Via simulation, we show that the proposed 

approaches enhance the packet latency by 61% compared to fixed step size MaxFlex.
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Chapter 1 : Introduction 

In the last few years, there is an industry wide switch to many-core and multi-core 

systems. In such systems, the performance of the communication system is very critical 

to the performance of the whole system.  

Network-on-Chip (NoC) has emerged as a solution for the limitations in the 

traditional communications approaches (e.g. buses) especially after the tremendous 

increase in the number of the communicating modules within a single silicon chip [1,2]. 

NoC is a group of switches connecting homogeneous or heterogeneous nodes in a 

multiple point-to-point fashion [3,4]. NoC switches forward the data to/from the 

nodes/switches over links equipped with input and output buffers. 

Buffered NoCs became the de facto approach for communication between cores 

within chip as they are more scalable, reliable, and predictable. Buffered NoCs were 

shown to consume significant power and chip area. For instance, in the Intel Teraflops 

chip and the MIT RAW chip, NoC fabric consumes around 30% and 36% power 

respectively [5,6]. Focusing on a single NoC switch, a considerable fraction of power 

and area is used by the internal buffers of the switch. In [7,8], the buffers within a 

single switch consume around 37% power and 80% area. In addition to being heavy 

power and area consumers, buffered NoCs are more complex to design as they require 

extra handlers for packets placement and buffer overflow. 

Bufferless NoC has emerged as a solution to decrease power and area requirements 

[9,10,11,12]. Bufferless NoC eliminates the buffers used within switches; which has a 

direct impact on power and area. In contrast to the traditional buffered NoC; when two 

packets compete for the same output port, the allocator either drops or deflects 

(misroute) the losing packet instead of buffering it. Dropped packet should be 

retransmitted again. On the other hand, deflected packet follows a non-productive port. 

Due to the hazards accompanying the dropping mechanism such as handling positive 

(ACK)/negative (NACK) acknowledgement (NACK buffers [9], NACK network [11]), 

storing the packet within the source node (extra storage), and retransmission (increase 

the total network load), in this thesis, we adapt the deflection approach. 

Even though bufferless NoCs have their advantages regarding area and power 

consumption, they have their own problems. Eliminating buffers helps in decreasing the 

chip area and limiting the consumed power, but at the same time, the flits have no place 

to reside in case of port contention which leads to dropping or deflecting the flits. This 

dropping/deflecting mechanism results in increasing the NoC traffic volume which in 

turn consumes link bandwidth.  

Both mechanisms under low to medium rates lightly affect the performance (packet 

latency and deflection count) leading to a performance approaching buffered NoCs. On 

the other hand, under high injection rates, the number of packets increases leading to 

more contention, as a result, using bufferless NoCs leads to reducing the total available 

bandwidth (as a result of increasing the traffic volume due to retransmitting the flits or 

deflecting the flits away from their destination) which eventually leads to a 

performance worse than buffered NoCs. Thus, bufferless NoC is shown generally to 

function efficiently under moderate loads and smaller NoC sizes [10]. 

In this thesis, we study several aspects of bufferless NoC to serve latency-sensitive 

applications. In other words, we aim to operate latency-sensitive applications on 
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Figure 1: Generic switch in a 2D mesh 

bufferless NoCs under high injection rates without inducing extra power or chip area 

usage. This work follows three tracks; enhancing performance through output selection 

functions, enhancing performance through flit ranking policies, and finally, enhancing 

performance through congestion prevention.  

1.1. Basic Background 

In this section, we formally introduce some notations that shall assist in describing 

the scope and contribution of this work. Specially: (1) buffered NoCs, (2) bufferless 

NoCs, (3) selection functions, (4) maximum flexibility, (5) flit ranking policies, and (6) 

congestion management. We now discuss these topics briefly. 

1.1.1. Buffered NoCs  

A 2D buffered NoC is a two dimensional array of nodes. Each node is connected to 

the network using a switch. The switches are connected in a multiple point-to-point 

fashion. Switches forward the data to/from the nodes and/or switches over links. Each 

link is equipped with input and output buffers. The data is delivered as packets where 

each packet is divided into several flow control units called flits. Topology defines the 

networks logical layout (connections). A sample switch in a 2D mesh is shown in 

Figure 1. 

Buffered NoCs are used widely as a communication fabric. To handle the 

contention that may occur between two flits arriving simultaneously at an output port, 

buffered NoCs use the input buffer to store the incoming flits. By doing this, the switch 

can store the flits that lost the arbitration and forward the winning flits.  

Buffered NoCs have the drawback of consuming significant power and area. For 

example, the NoC fabric in the Intel Teraflops chip and the MIT RAW chip consumes 

30% and 36% respectively of the required power [5,6]. Also the network occupies large 

chip area (for example, 80% area [7,8]) due to buffer usage. Beside consuming power 

and area, buffered NoCs are complex to design due to the need to implement different 

scenarios for handling the buffers logic. One way to reduce the required power and chip 

area is to eliminate the buffers within the network; i.e. bufferless NoC.  
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1.1.2. Bufferless NoCs 

Bufferless NoCs have been proposed to reduce the power and area consumption 

and to simplify the design process. This is done by removing the input and output 

buffers. 

Bufferless NoCs handle the output port contention by either dropping the losing 

packet or by deflecting it. Bufferless NoCs that use the dropping mechanism chooses to 

drop the packet that lost the contention competition. By dropping the packet, bufferless 

NoCs have to retransmit this packet which leads to an increase in the network traffic 

and/or the hardware cost and design complexity. 

The deflecting bufferless NoCs choose not to drop any contending packet. Instead, 

bufferless NoCs forward all the incoming packets to output ports even if it means to 

forward the packets through longer paths (non-productive ports). The deflecting 

buffered NoCs are preferred due to their simpler design, and less power and area cost.  

However, using bufferless NoCs can cause degradation in the performance. A 

recent study [10] showed that the power and area gains exceed the degradation in the 

network performance when NoC load is low to medium, which matches many of the 

real-life applications. 

1.1.3. Selection Functions 

To route a packet successfully from a source node to a destination node, it is 

required to have a routing function and a selection function. The routing function 

calculates the path to follow between a source–destination pair and offers a set of 

output ports to get closer to the destination. The selection function selects an output 

port from the supplied set of ports.  

Routing could be classified as deterministic or adaptive based on the selection 

function. Routing is deterministic if the selection function delivers the same port for 

each source-destination combination each time. On the other hand, routing is adaptive 

if the selection function delivers a port based on the network state, thus the selection 

function may deliver different port each time it is used [3]. 

Many selection functions exist for 2D meshes such as Straight Line (similar to 

dimension order routing DO) which favors X (or Y) dimension than Y (or X) till no 

more steps left in X (or Y) and then alternate to the other dimension i.e. Y (or X). 

Another selection function is Random Productive Port which selects one of the flit’s 

productive ports randomly. One of the well-known selection functions is Maximum 

Flexibility.  

1.1.4. Maximum Flexibility Selection Function 

Maximum Flexibility (MaxFlex) is a selection function that is similar to the z
2
 

routing proposed in [13]. It selects the output port on the dimension with more hops to 

the destination (i.e. longest distance to the destination). By doing this, MaxFlex 

maximizes the number of productive ports provided by the routing function as the flit 

approaches its destination. In other words, MaxFlex prevents the flit from being stuck 

in one dimension leading to one productive port only. 

MaxFlex tries to move the packets on a diagonal between the source and the 

destination. Packet initially follows the dimension with higher hop count. When it 

reaches a switch where the difference in the X-dimension is equal to the difference in 
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the Y-dimension, it follows the diagonal. The path of the diagonal is dependent on the 

step size used. Step size of SS means that a packet moves SS steps in X-dimension and 

then SS steps in Y-dimension. 

MaxFlex causes the traffic to be concentrated in the central part of the network 

bisection as it tries to move on the diagonals. This leads to uneven switches utilization 

which degrades the performance [14].  

1.1.5. Flit Ranking Policies 

Under normal operation, a NoC switch can receive several flits at the same cycle 

from the neighboring switches and/or from the node connected to it. For example, if a 

switch, in a 2D mesh topology, is connected to four switches, it can receive up to 

maximum five flits at the same cycle. Each flit has its own destination and wants to 

pass through its productive port i.e. wants to get closer to its destination. How the 

switch determines the order by which it will serve the incoming flits is determined by 

the ranking policy. In other words, it determines which flit can select an output port 

first.  

Different ranking policies lead to different service order for the flits travelling 

through the NoC. To be more specific, different policies lead to different arrival order 

for the NoC flits which leads to a different set of flits reaching their destination before 

the others. The delivery of a certain set can result in a better performance but this is not 

the only factor. Flit ranking schemes have a direct effect on livelock property in the 

NoC [3,4]. Some schemes can result in packets travelling indefinitely the NoC and 

never reaching their destinations. 

In bufferless NoC, due to the buffers elimination, the ranking policies have a 

greater effect on the overall performance as the flit that fails to get its productive port 

will be forced to take a detour. 

Different criteria can be used as ranking policies. For example; Oldest First (OF) 

policy ensures there is a total age order among flits and prioritizes older flits, Closest 

First (CF) policy prioritizes the flits with smaller distance to their destinations before 

flits whose remaining distance is larger, Most Deflections First (MDF) policy gives 

higher priority to the flits with more deflections, and Round Robin (RR) policy ranks 

the flits from different input ports in a round robin fashion. 

1.1.6. Congestion Management 

Under high injection rates, the traffic volume in the NoC increases causing more 

strain on the NoC links and buffers. When the NoC reaches a point where the buffers 

and the links are occupied and can’t handle the traffic load, then the NoC is said to be 

congested. Under congestion, the NoC can’t function properly and can’t retain its 

normal performance. Specifically, the flits simply continue roaming in the NoC without 

reaching their destinations which increases the traffic volume and prevents the injection 

of new flits (i.e. nodes starvation). 

In bufferless NoC, the congestion can arise and develop more quickly and severely 

as the links are the only available buffering resources. Bufferless NoCs have been 

shown to function efficiently under moderate loads and smaller NoC sizes [10]. But 

under high injection loads and due to the lack of buffers, bufferless NoCs fail to operate 

and scale efficiently causing a collapse in the overall performance. This prevents 
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bufferless NoCs from competing with buffered NoCs performance especially under 

high injection rates. 

To tackle the congestion in a NoC, one of the approaches is to detect the 

congestion and then control its effect to retain the normal NoC behavior. Another 

approach is to provide the needed resources and take various measures to prevent the 

congestion from forming in the first place.   

1.2. Related Work 

In this section we summarize the previous work done related to bufferless NoCs 

and to our work specifically. We list the different algorithms, techniques and ideas 

related to bufferless routing algorithms, output port selection functions, flit ranking 

policies, and congestion management. We survey these topics state-of-art briefly. 

Concerning bufferless routing, several previous works examined the use of both 

dropping and deflecting routing approaches in bufferless. [9,15,11] proposed dropping 

based routing algorithms where the packets with low priority are dropped once a port 

contention occurs. These previous studies suffered extra performance loss given the 

fact that they require a separate network for the ACK/NACK packets delivery, and they 

induce extra traffic load due packet retransmission. In order to reduce the packet 

dropping, [16] proposed a selective packet-dropping routing. In [10], a set of deflecting 

routing algorithms for bufferless routing (BLESS) was proposed. This study used real 

applications and synthetic workloads to evaluate the network energy consumption, 

performance, latency, and area requirements of bufferless routing. Their algorithms 

resulted in around 40% energy reduction with a small degradation in the performance 

under light traffic. Also, the algorithms save around 60% of area requirements. 

However, in [12], BLESS was shown to be complex for hardware implementation due 

to its output allocator. The work done in MaS [17] solved some of the drawbacks in 

[12] by using packet-sized buffer at each switch which is used to hold the packet with 

higher priority in case of contention thus decreasing the receiver side buffering 

requirements caused by the out-of-order delivery of BLESS (caused by either the 

truncation or by considering each flit as a head flit) by 80%. Also, MaS achieves better 

average packet latency and average power consumption compared to BLESS by 10% 

and 9% respectively. Also, in [18], a simplified bufferless router (CHIPPER) was 

presented, in which a permutation network was designed to solve the output allocation 

problem in BLESS. However, its deflection rate is high at the medium-to-heavy traffic 

load. Several works [19,20,21] have been proposed to reduce the packet deflections by 

adding a few buffers. In [20], a hybrid bufferless router (MinBD) was presented, in 

which a bufferless router is combined with a small side-buffer. In addition, a buffer 

controller was designed for identifying the packets which would be deflected and are 

needed to be temporarily stored in the side-buffer. While in [19], a hybrid bufferless 

router with an adaptive flow control (AFC) was presented, in which the routing scheme 

switches between the buffered and bufferless routing according to the network load. 

However, using buffers in [19,20,21] weakens the primary advantage of the bufferless 

NoC in cost and energy. The authors in [22] approached the problem by trying to 

decrease the deflection count as a cause for the performance degradation in bufferless 

NoCs. They constructed three deflection models to analyze the deflection causes, and 

proposed a deflection routing based on turn model to reduce the deflections during 

packet transmissions. The experimental results for [22] showed a reduction in the 

deflection rate by 41% compared to other bufferless networks.  
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As for the selection functions, in [13], the authors proposed zigzag (z
2
) selection 

function (the inspiration for MaxFlex) as an optimal selection function for mesh 

topology. However, in [14,23,24], the authors analyzed different selection functions for 

mesh topology and found that z
2
 is not the best for this topology. [25] presented a 

topology-independent selection function. None of the previous studies evaluated the 

MaxFlex on bufferless NoCs or evaluated the effect of changing the value for the used 

step size. Other studies focused their attention on other topologies such as fat-trees. [26] 

was the first to propose and evaluate different selection functions for fat-trees. The 

study showed that a selection function dependent on current switch address and 

destination address (SADP) has slightly better performance in case of uniform traffic as 

it balances the load on the links. The authors in [27] proposed and analyzed a selection 

function dependent on the stage and the source node (SAOP) that outperformed other 

selections functions in hot-spot traffic. In [28], the authors proposed a cost-efficient 

congestion management mechanism for fat-trees that detects the current traffic pattern 

and switch to a certain selection function that is proved to give better performance 

under the detected traffic pattern. The work done in [29] proposed Cool Centers 

Priority (CCP) selection function for buffered 2D meshes to eliminate hot-spots, and to 

guarantee load balancing.  

Concerning flit ranking policies, in [30], the authors showed that ranking-based 

policies using global or history-related criterion are beneficial in a deflection-based 

NoC. [10] evaluated several flit ranking polices (OF, CF, MDF, and RR) under BLESS 

and selected OF as their primary ranking policy as it is guaranteed to avoid livelock. 

However, the authors in [22] chose MDF as their main ranking policy as they aimed to 

decrease the overall deflection count. 

Finally, for the congestion management, [31,32,33] were proposed to adjust the 

network load. These previous studies controlled the injection rate of each node, and 

restricted the injection of latency-insensitive processing node if the network load 

becomes heavy. However, these studies lacked the detailed understanding of the 

workloads, which made the system design more difficult. In [34], the authors proposed 

a distributed congestion control mechanism (Cbufferless) for bufferless NoC. This 

study detected network congestion by monitoring deflection information of the flits and 

used dynamic node throttling for the node(s) causing network congestion. 

1.3. Scope of the Thesis 

This thesis has three main directions regarding bufferless NoCs. These three 

directions aim for a performance similar to buffered NoCs under high injection rates. 

The first direction targets the selection functions specifically MaxFlex. It reduces the 

packet latency and the average deflection count via increasing and varying the used step 

size. The second investigates the flit ranking policies. It enhances the performance via 

using policies that exploit the properties of the bufferless NoCs specifically the 

deflection behavior. Finally, the third direction aims to relax the NoC congestion. It 

achieves that by giving more space for the flits to roam and/or organizing the 

applications’ injection behavior. In each direction, we propose new approaches that 

enhance the performance while trying to keep the area and the power intact. 
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1.3.1. Increasing and Varying Step Size Under MaxFlex 

The first direction of this thesis focuses on enhancing the traffic distribution under 

MaxFlex in order to decrease port contention in 2D bufferless meshes. Typical 

MaxFlex (Step Size = 1) tends to focus the traffic on the NoC diagonal (central part) 

which leads to increase in the port contention and as a result increases the deflection 

count and the packet latency. In Chapter 3, we present a study, both analytical and 

experimental, on the effect of increasing the step size under MaxFlex on the traffic 

distribution and eventually on the overall performance. We also propose the ideal step 

to use under different mesh sizes. 

For the analytical part; we identify 12 types of traffic that constitute collectively 

the MaxFlex traffic in the network. The analysis shows that increasing the step size 

leads to a better load distribution over the NoC switches. In other words, the central 

part of the network bisection becomes more relaxed. 

Then, we simulate a 10x10 mesh under uniform traffic and use step size values 

ranging from 1 to 9 to check the effect the NoC performance. The results show that 

increasing the step size leads to better packet latency and smaller deflection count thus 

enhancing the NoC performance. To be exact, using a fixed step size of 8 enhances the 

packet latency and the deflection count by 95% and 38% respectively compared to 

using Straight Line selection function. Also, for different mesh sizes, simulation results 

show that a step size of 60-80% of the mesh dimension leads to better performance. 

In Chapter 4, we address the idea of using different step size for each packet. By 

using variable step size, we tend to further enhance the traffic distribution aiming to 

utilize more links and hence decrease the contention and the deflections. We propose 

different formulas for determining the variable step size value for each packet. Each of 

the proposed formulas is devised to be a function in the distance between the source 

and destination. The formulas fall into one or more of the following categories; 

formulas that consider the distance between the source and destination as nodes, 

formulas that consider assigning the NoC nodes to virtual regions and then consider the 

distance between the source and destination regions, and finally, formulas that also use 

the regions concept but differ between in-region and out-region routing.  

Simulating these formulas under 10x10 mesh conforms that varying the step size 

(using a valid formula) leads to better distribution for the flits among the NoC links 

thus better NoC performance. Specifically, the results show that using a variable step 

size can enhance the results over using a fixed step size of 8 by up to 29%. The results 

come in line with the analytical results of increasing the fixed step size. 

1.3.2. Evaluating Flit Ranking Policies 

In this direction, we exploit the deflecting bufferless NoCs properties to provide 

better performance. Based on the results from the fixed/variable step size study and 

from recent bufferless NoC study [22], in Chapter 5, we study the effect of the flit 

ranking policies on 2D bufferless meshes’ performance, and propose various policies 

tailored to decrease the flits’ deflections in the NoC. In other words, the proposed 

approaches favor the flit with more deflections as extra detouring for this flit leads to 

extra delay thus increasing the overall packet latency. 

We investigate the usage of the flit’s deflection count along with its age and the 

distance between its source and destination. Also, we develop an enhancement over the 

proposed policies. The enhancement favors the flit with steps in one direction only as 

any deflection shall result in at least two hops to correct its path. 
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We simulate a 10x10 mesh using the enhanced deflection-based approaches. The 

experiments show that proposed policies lead to better performance. Specifically, using 

the proposed enhancement along with the proposed policies decreases the packet 

latency by 58% compared with using fixed step size MaxFlex with Oldest First ranking 

policy. 

1.3.3. Preventing the Congestion 

The final direction aims to prevent the bufferless NoC congestion. In Chapter 6, we 

study the congestion in bufferless NoCs, and propose two mechanisms for preventing 

the congestion development. Both of the proposed mechanisms prevent the congestion 

by providing more space for the flits to move by decreasing and/or dividing the traffic 

volume. 

We investigate how to relieve the traffic volume thus preventing the congestion 

from developing in the first place. To be able to do that, we provide more links 

bandwidth to the flits so that they have more freedom in their movement towards their 

destinations. We propose two mechanisms to perform this freedom.  

First, we propose running the applications on a NoC larger than what is required. 

For example, instead of running the application mix on a 3x5 mesh, we propose 

running the same application mix on a 4x4 mesh. The idea behind this mechanism is to 

take advantage of the extra links provided as a result of using the larger NoC thus 

providing extra space for the flits to move with less competition with the other flits.  

Second, we propose dividing the application mix into smaller sets, and then run the 

smaller sets sequentially on the whole NoC. The smaller application mix in 

combination with the sequential operation leads to injecting less data into the NoC in 

each smaller run which directly affects the deflection count and the packet latency in a 

positive way.  

We simulate both mechanisms on a 10x10 mesh and measure the enhancements in 

the performance. Using the proposed prevention mechanisms enhances the packet 

latency and the deflection count by 61% and 68% respectively compared with using 

fixed step size MaxFlex. 

1.4. Contribution of the Thesis 

With the increasing demand on mobile processing, two main engineering factors 

come into sight: chip area and power. With the interconnection as an important element 

of modern processors and a main contributor to chip area and power; the decision of 

optimizing the interconnection area and power is one of the top-list goals in design.  

In this thesis, we aim to make the bufferless NoCs work in a fashion similar to 

buffered NoCs under high injection rates while keeping the area and power gains. We 

optimize bufferless NoCs through adopting multiple approaches: enhance using 

selection functions, enhance using ranking policies, and enhance using congestion 

prevention. The proposed approaches aim to decrease the overall packet latency and 

average deflection count. Additionally, the approaches aim to push the injection rate 

boundary for the bufferless NoCs making it feasible in a wider range of practical 

applications instead of using the heavy area and power consumer - the buffered NoCs. 

First, we propose using larger step sizes under MaxFlex selection function (instead 

of using a step size of one). We thoroughly analyze the MaxFlex under uniform traffic 

and identified 12 types constituting the traffic. Through using larger step sizes, the 
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traffic concentration becomes more distributed among the center and border switches 

leading to less contention among the flits. Using larger step sizes, we are able to use 

bufferless NoCs under higher injection rates while keeping the average packet latency 

and average deflection count feasible. We also propose novel approaches for using 

variable step size for each flit instead of using fixed step size for all the flits. These 

approaches utilize the NoC links better leading to even better performance. These 

enhancements are achieved without using any extra buffers thus we keep the chip area 

small. Also, we distribute the traffic leading to using more links but the frequency of 

each link decreases which keeps the power usage in its normal figures.  

Ranking policies aims to put an order for serving the flits. Knowing that the 

deflection count for the flits plays a great role in the overall performance, we propose 

several policies that aim to decrease the overall deflections resulting in better 

performance. By devising polices based on the flits’ deflection count, we aim to favor 

the flits that suffered more deflections while not causing extra new deflections for other 

flits. Also, as in the selection functions, these ranking schemes don't use any extra 

buffers leading to good area and power performances. 

Finally, the main roadblock for bufferless NoCs is quickly becoming congested. 

We propose novel mechanisms for preventing the congestion by mitigating the initial 

cause for the congestion i.e. the traffic volume. As the traffic volume increases, and in 

addition to the absence of buffers, the flits have to compete with each other more 

frequently leading to more deflections and thus detouring. This unneeded detours make 

the flits travel in the NoC without reaching their destinations. The proposed 

mechanisms prevent the congestion by decreasing the traffic volume via using larger 

NoC or via organizing the applications work load. The proposed mechanisms fit the 

latency-sensitive applications that can be divided and allocated to different parts of the 

NoC. By organizing the applications allocation and operation, we achieve low packet 

latency and deflection count while keeping feasible power and area figures. 

1.5. Organization of the thesis 

This thesis is organized as follows. Chapter 2 explains the preliminaries of the 

concepts adopted in this thesis. In Chapter 3, we analyze and simulate the usage of 

fixed step size greater than one under MaxFlex.  Chapter 4 presents a study for the use 

of variable step size under MaxFlex. In Chapter 5, we propose several flits ranking 

policies and show their performance. Chapter 6 addresses the congestion problem in 

bufferless NoCs by proposing and evaluating two congestion prevention mechanisms. 

Finally, in Chapter 7 we summarize our findings and make some concluding remarks 

concerning the current and future work.  
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Chapter 2 : Background 

In this chapter, we present some preliminaries and concepts that are used in this 

thesis. We start with interconnection networks in Section 2.1. In Section 2.2 and 

Section 2.3, we discuss Network-on-Chip and bufferless Network-on-Chip respectively. 

Section 2.4 explains the idea behind selection functions. Then, Section 2.5 discusses flit 

ranking policies and their use. Finally, congestion management is discussed in Section 

2.6.  

2.1. Interconnection Network 

 

Figure 2: Example of interconnection network  

An interconnection network is a programmable system that transports data between 

terminals. The interconnection network system is composed of buffers, channels, 

switches, and controls that function together to deliver data. Figure 2 shows an example 

for an interconnection network with four terminals (      ) connected to it. To 

communicate with terminal   ,    sends a data message into the network and the 

network delivers the message to   , where         and    .  
The network is considered programmable as it makes different connections at 

different points in time. For example, the interconnection network in Figure 2 can send 

a message from T2 to T3 in one cycle and then send a message from T2 to T1 in the 

next cycle using the same resources.  

Many systems with different scale fall under the above definition. For example, on-

chip networks can deliver data between memory, registers, and arithmetic modules 

within a processor. On the other hand, system-level networks connect processors, 

memories, input/output (I/O) ports. Finally, local-area and wide-area networks connect 

different systems together within an enterprise or across large geographical distance.  

Interconnection networks can be found in almost all digital systems. Specifically, 

in computer systems, they connect processors to memories and I/O devices to I/O 

controllers. While, in communication switches and network routers, they connect input 

ports to output ports. Also, they connect sensors and actuators to processors in control 

systems.  

Around the late 1980s, most of the mentioned systems used the bus architecture as 

their interconnection network. However, recently all high-performance interconnections 
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Figure 3: Generic switch in a 2D mesh 

use point-to-point interconnection networks rather than buses. This change is due to the 

inability of buses to keep up with the enhanced processor performance and the 

bandwidth demand. On the other hand, point-to-point interconnection networks operate 

faster than buses. 

Interconnection networks are important because they are a limiting factor in the 

performance of many systems. The interconnection network connecting processor and 

memory largely determines two main performances metrics in a computer system, 

namely, the memory latency and memory bandwidth. In communication switches, the 

performance of the interconnection network determines the data rate and the number of 

ports of the switch.  

2.2. Network-on-Chip (NoC) 

In a chip multiprocessor (CMP) architecture, the NoC generally connects the 

processor nodes and their private caches with the shared cache modules and memory 

controllers. In a typical NoC, each node has a high-speed buffered switch that connects 

the node to its neighbors by links. The width of a link varies. Nodes send and receive 

packets; typical packets are small request and control messages, such as cache block 

read requests, and larger data packets containing cache block data. Packets are 

partitioned into flits which are the atomic unit of traffic. Flits have size equal to the 

width of a link. Typically, links have a latency of only one or two cycles, and are 

pipelined, so that they can accept a new flit every cycle.  

NoC topology defines the networks logical layout (connections). Various NoC 

topologies exist, but the most used topology is the 2D mesh [3,4], which is 

implemented in several commercial products [35,36] and research prototype many-core 

processors [7,37,38]. In mesh topology, each switch has maximum of 5 input and 5 

output channels/ports; one from each neighboring switch and one from the node 

connected to it. A sample switch in a 2D mesh is shown in Figure 3. 

Since the switch plays a crucial role in the NoC, its design needs to be simple to 

simplify the overall NoC design. As a result, current implementations tend to use 

simple routing algorithms. The most common routing algorithm is Dimension Order 

routing (DO) which route the flit first along the X direction until the destination’s Y 

coordinate is reached; then route to the destination in Y direction. 

NoC has a set of characteristics that differentiate it from the traditional networks. 

We summarize these characteristics in the following points: 
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1) Topology: The topology is statically known, and usually very regular. A 

change in topology impacts various aspects, such as routing and traffic-load.  

2) Latency: Links and switches have latency much lower than traditional 

networks.  

3) Routing: Routing logic is designed to minimize the complexity and the latency 

as the NoC switch stages must take no more than a few cycles. 

4) Coordination: Global coordination is possible and often less expensive than 

distributed adaptive mechanisms, due to a relatively small known topology, 

and low latency.  

5) Links: Links are expensive in terms of both hardware complexity and on-chip 

area.  

6) Traffic Patterns: Cache miss behavior of the running applications drive traffic 

patterns in a NoC.  

7) Power: The existence of a constrained power budget differentiates NoCs from 

traditional networks. 

2.3. Bufferless Network-on-Chip 

Recent work has shown that it is possible to eliminate buffers from the NoC 

switches. In such bufferless NoCs, application performance degrades minimally for 

low-to-moderate network intensity workloads, while some work shows that power 

consumption decreases by 20-40%, router area on die is reduced by 75%, and 

implementation complexity also decreases [10]. While other evaluations have shown 

that optimizations to traditional buffered router designs can make buffers more area- 

and energy-efficient [12], bufferless design techniques such as those in [18,20,17,22] 

address inefficiencies in bufferless design. In a bufferless NoC, the general system 

architecture does not differ from traditional buffered NoCs. However, the lack of 

buffers requires different injection and routing algorithms in the network. 

As in a buffered NoC, a bufferless NoC injects and routes flits synchronously 

across all nodes/switches. The node is able to inject each flit of the packet into the 

network as long as one of its output links is free. Injection requires a free output link as 

there is no buffer to hold the packet in the switch. If no output link is free, the flit 

remains queued inside the node. A flit is routed to a neighbor based on the routing 

algorithm, and the arbitration policy.  

Flits are arbitrated to output ports based on the required direction and the ranking 

policy used. If flits contend for the same output port, their ranks are compared, and the 

one with higher rank (priority) obtains the port. The other contending flit(s) are either 

dropped or by deflected.  

Bufferless NoCs that uses the dropping mechanism chooses to drop the packet that 

lost the contention competition. By dropping the packet the NoC has to retransmit this 

packet which leads to an increase in the network traffic and/or the hardware cost and 

design complexity. 

The deflecting bufferless NoCs choose not to drop any contending packet. Instead, 

it forwards all the incoming packets to output ports even if it means to forward the 

packets through longer paths (non-productive ports). The deflecting buffered NoCs are 

preferred due to its simpler design and less power and area cost. An example for a 

deflecting bufferless NoC is BLESS [10]. 

Previous work [10] has shown significant reductions in chip power and area from 

eliminating buffers in the NoC, however, that work has focused primarily on low-to-
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Figure 4: The operation of MaxFlex selection function using step size of one 

medium network load. Higher levels of network load remain a challenge, and 

improving performance in these cases increases the applicability of bufferless NoCs. 

Furthermore, as the size of the CMP increases, the efficiency gains from bufferless 

NoCs become more important.  

2.4. Selection Functions 

A routing algorithm is divided into two functions: routing function and 

selection function. The routing function provides a set of productive output ports 

based on the current node and the destination node. The selection function 

selects from this set based on the status of the output ports at the current node. 

This selection is performed in such a way that a free channel (if any) is supplied. 

The routing function determines whether the routing algorithm is deadlock-free 

or not. However, the selection function only affects performance. 

There are two ways to perform the selection: the selection function can 

ignore the network state, for example, the selection can be random; or the 

selection can take into account the status of output ports and channels at the 

current node. Obviously, the selection second approach is better as it works 

based on some sort of feedback from the NoC.  

When several output ports are available, some policy is required to select 

one of them. Policies can have various goals, for example, balancing the use of 

resources, reserving some bandwidth for high-priority packets, or even delaying 

the use of resources to be used for deadlock avoidance. However, under any 

policy, the selection function should give preference to ports belonging to 

minimal paths i.e. productive ports. Otherwise the selection function may 

produce livelock.  
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Various selection functions exist for   dimensional meshes with the goal of 

maximizing performance. Three of the well-known selection functions are 

Minimum Congestion (MinCon), Maximum Flexibility (MaxFlex), and Straight 

Line (SL).  

In MinCon, a virtual channel is selected in the direction with the most 

available virtual channels. This selection function works with buffered NoCs and 

tries to balance the use of virtual channels in different physical channels. The 

idea behind this selection function is since the packet transmission is pipelined, 

then flit transmission rate is limited by the slowest stage in the pipeline. 

Balancing the use of virtual channels balances the bandwidth allocated to 

different virtual channels.  

In MaxFlex, a channel (physical or virtual) is selected in the dimension with 

the greatest distance to travel to the destination. This selection function tries to 

maximize the number of routing options as a packet approaches its destination. 

This selection function can perform under both buffered and bufferless NoCs. 
Specifically, MaxFlex first moves the flit till the number of hops left in the X-

dimension is equal to the number of hops left in the Y-dimension. After that, MaxFlex 

moves the flit one step on the X-dimension and then one step on the Y-dimension i.e. 

MaxFlex tends to move the flit on a diagonal. Figure 4 shows the operation of MaxFlex 

selection function.  

In meshes, MaxFlex selection function concentrates the traffic in the central 

part of the network bisection producing uneven channel utilization which 

degrades the NoC performance. This downside has more effect in buffered NoCs 

than in deflection-based bufferless NoCs due to the lack of buffers and the 

deflecting behavior in the latter case. The absence of buffers forces the flits to be 

deflected, in contrast to moving into one of the available buffers (in case of 

buffered NoCs). This deflection behavior moves small portion of the traffic 

away from the central NoC switches, thus decreasing the concentration.   

Finally, in SL, a channel (physical or virtual) is selected in the dimension 

closest to the destination. So, the packet travels in the same dimension whenever 

possible. This selection function tries to route packets in dimension order unless 

the requested port in the corresponding dimension is not available. This selection 

function can perform under both buffered and bufferless NoCs. In meshes, this 

selection function achieves a good distribution of traffic across the network 

bisection as it tends to move the traffic more towards the NoC borders. 

2.5. Flit Ranking Policies 

As mentioned above, routing algorithms compute the productive port(s) to move 

the flit from the current switch to the destination switch via a routing function, and then 

select the output port for the flit via a selection function. If multiple flits simultaneously 

request the same output port, some sort of arbitration must be provided between them.  

Different arbitration approaches can be used to allocate the required channel 

bandwidth including random, round robin (RR), or ranking policies. For random 

selection, any flit is selected randomly without considering the NoC status. For RR 

selection, output ports are arranged in a circular list. When a port transfers a flit, the 

next port in the list is selected for the next flit transmission. Finally, ranking policies 
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uses various criteria to determine which flits should be served first. Ranking policies 

require some information to be carried in each flit to be used as thee ranking criterion.  

Different criteria can be used as ranking policies. For example; Oldest First (OF) 

policy ensures there is a total age order among flits and prioritizes older flits, Closest 

First (CF) policy prioritizes the flits with smaller distance to their destinations before 

flits whose remaining distance is larger, and Most Deflections First (MDF) policy gives 

higher priority to the flits with more deflections. 

Different arbitration (and ranking policies) leads to different service order for the 

flits travelling through the NoC. To be more specific, different arbitration leads to 

different arrival order for the NoC flits which leads to a different set of flits reaching 

their destination before the others. The delivery of a certain set can result in a better 

performance but this is not the only factor. The selected arbitration has a direct effect 

on livelock property in the NoC [3,4]. Specifically, an arbitration approach can result in 

flits travelling indefinitely the NoC and never reaching their destinations. 

In bufferless NoCs, due to the buffers elimination, the used arbitration approach 

has a greater effect on the overall performance compared to buffered NoCs as the flit 

that fails to get its productive port will be forced to take a detour. However, in buffered 

NoCs, if the requested port is busy, the flit remains in the input buffer and shall be 

routed again after the port is freed and if it successfully arbitrates for the port. 

2.6. Congestion Management  

Under high injection rates, the traffic volume in the NoC increases causing more 

strain on the NoC links and buffers. When the NoC reaches a point where the buffers 

and the links are occupied and can’t handle the traffic load, then the NoC is said to be 

congested. Under congestion, the NoC can’t function properly and can’t retain its 

normal performance. Specifically, the flits travel in the NoC without reaching their 

destinations which increases the traffic volume and prevents the injection of new flits. 

In bufferless NoC, the congestion can arise and develop quickly and severely as the 

links are the only buffering resources. Bufferless NoCs have been shown to function 

efficiently under moderate loads and smaller NoC sizes [10]. But under high injection 

loads, and due to the lack of buffers, bufferless NoCs fail to operate and scale 

efficiently causing a collapse in the overall performance. This prevents bufferless NoCs 

from competing with buffered NoCs performance especially under high injection rates. 

To tackle the congestion in a NoC, one of the approaches is to detect the 

congestion and then control its effect to retain the normal NoC behavior. Another 

approach is to provide the needed resources and take various measures to prevent the 

congestion from forming in the first place. 

The detection and control approaches apply heuristics and monitor the NoC 

performance to detect the congestion once it arises. If congestion is detected, these 

approaches apply a control mechanism to relieve the congested areas. The problem with 

these approaches is that if the heuristics used to monitor the performance or the actions 

taken to relieve the congestion are biased or excessive, the overall performance of the 

system is affected.  

On the other hand, the prevention approaches uses extra resources to decrease the 

probability of developing the congestion. The idea is to use the extra resources to 

provide other options for the flits in case of contention under high traffic volume. For 

example, a buffered NoC can use extra buffers to host the flits in case of increased 

traffic volume.   
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Chapter 3 : Modified Maximum Flexibility Selection 

Function  

As stated before, routing is composed of routing function and selection function. 

Maximum Flexibility (MaxFlex) selection function [13] was introduced with the 

advantage of maximizing the number of productive ports provided by the routing 

function as the flit approaches its destination. However, MaxFlex selection function 

uses a step size of one. 

In this chapter, we investigate the effect of using a step size larger than one under 

MaxFlex selection function. First, we propose the modified MaxFlex selection function 

(MMaxFlex) and show its operation. Then, we provide a thorough analytical study for 

MMaxFlex. In our analysis, we begin by analyzing the traffic in 2D meshes under 

MMaxFlex for any step size. Then, we prove that any packet passing through a node 

can be classified into one of twelve traffic types. Finally, we derive the count of packets 

for each type passing through a switch. We also provide simulation results and explain 

how it conforms to the analysis. 

The chapter is organized as follows; Section 3.1 provides the motivation behind the 

MMaxFlex, and how it works. Then, we analyze the effect of the step size under 

MMaxFlex on the packets distribution in Section 3.2. In Section 3.3, we prove that any 

packet under MMaxFlex passing through a switch can be classified into one of twelve 

traffic types. We provide the effect of using MMaxFlex on the distribution of packets 

within the NoC in Section 3.4. Sections 3.5 and 3.6 present the experimental setup and 

the simulation results respectively. In Section 3.7, we estimate the value of the step size 

based on the dimensions of the NoC. Finally, Section 3.8 makes some concluding 

remarks.  

3.1. Proposed Approach  

MaxFlex selection function tends to alternate the flit’s movement on both 

dimensions as a way to make more productive ports available for the flit. Specifically, 

MaxFlex first moves the flit till the number of hops left in the X-dimension is equal to 

the number of hops left in the Y-dimension. After that, MaxFlex moves the flit one step 

on the X-dimension and then one step on the Y-dimension i.e. MaxFlex tends to move 

the flit on a diagonal. Figure 5 shows the operation of MaxFlex selection function. 

The main problem with MaxFlex is that it tends to concentrate the traffic on the 

central part of the NoC leading to more contention between the flits to get the required 

output ports, thus leading to more deflections in case of bufferless NoC. Eventually, the 

flit takes more cycles to reach the destination i.e. higher average packet latency. 

In this chapter, we propose a modified version of MaxFlex (MMaxFlex) to keep 

the freedom provided by the MaxFlex selection function while relaxing the contention 

on the central NoC switches. To achieve our goal, we incorporate the idea of the 

Straight Line (similar to DO) selection function property to the MaxFlex selection 

function. Straight Line selection function tends to focus the movement of flits on the 

NoC’s border switches while MaxFlex tends to focus the movement of flits on the 

NoC’s central switches (i.e. the switches in the middle of the NoC). 
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Figure 5: The operation of MaxFlex selection function using step size of one 

As a result, we propose using MaxFlex with a step size greater than one. This 

moves the traffic further towards the borders and decreases the concentration on the 

NoC’s central switches. This approach leads to less contention and subsequently less 

deflections and smaller packet latency. In the next section, we analyze MMaxFlex in 

bufferless 2D meshes for any step size.   

3.2. Analysis of MMaxFlex Selection Function 

In this section, we study the effect of the step size on the distribution of packets 

through bufferless     two-dimensional mesh network. In doing that, for a certain 

step size, we count the number of packets passing through each switch (all ports 

included). To simplify the analysis, we divide the traffic going through a switch into 12 

different types. Finally, we derive the number of passing packets belonging to each 

type.  

In the following analysis, we assume that: 

1) Each node sends only one packet to each other node (i.e. each node sends 

n
2
-1 packets) 

2) Packet length is one Flit 

3) No deflections (i.e. path of each packet is only affected by the value of step 

size and not by misrouting due deflection). This assumption is set to ease 

the analysis.  

Before going into the analysis details, we present some definitions and 

terminologies that are used throughout the analysis. First, we differentiate between 

increasing and decreasing diagonals in a 2D mesh. Figure 6 shows both of the diagonal 

types. In the decreasing diagonal, both the X and Y indices increases for each node 

along the diagonal. In contrast, the X index increases while the Y index decreases for 

each node along the increasing diagonal. A typical 2D mesh switch belongs to an 
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Figure 6: Increasing and decreasing diagonals in a 2D mesh 

 

Figure 7: Up and down traffic in 2D mesh 

increasing diagonal as well as a decreasing diagonal but not necessarily of same size 

(Check Appendix A for more details). 

Second, concerning the traffic moving on a diagonal, we divide such traffic to up 

traffic and down traffic. Up traffic is the traffic from nodes with higher index to nodes 

with lower index, where index is the position of the node in a NoC row or column or 

diagonal (depends on the traffic type under study). On the other hand, down traffic is 

the traffic from nodes with lower index to nodes with higher index. Figure 7 shows the 

difference between up and down traffic. 

In the following sub-sections, we study each traffic type separately. All the traffic 

types fall under one of two categories:  

1) Type resulted from a communication behavior not related to MaxFlex 

exclusively 

2) Type resulted from a communication behavior related to MaxFlex  
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The first category is concerned with the traffic types that can be a result of other 

selection functions, not only MaxFlex. For example, this category can exist if Straight 

Line selection function is used. However, the second category exists only due to the 

unique behavior of MaxFlex operation.  

The twelve traffic types are summarized as follows. Type 1 and Type 2 are 

concerned with the traffic resulted from the ejection and injection respectively. Type 3 

is a result of row nodes communicating with each other. Similarly, Type 4 is a result of 

column nodes communicating with each other. All the previous types (1, 2, 3, and 4) 

belong to the first category.  

As for the second category, Type 5 is for the communication between the nodes 

belonging to the same diagonal. Type 6 and Type 7 are similar to Type 5; however, 

both of them are concerned with row or column nodes communicating with diagonal 

nodes. Specifically, Type 6 focuses on the communication between row nodes and 

diagonal nodes (movement on both row and diagonal switches), while Type 7 focuses 

on the communication between column nodes and diagonal nodes (movement on both 

column and diagonal switches).  

Communication behavior described in Type 8, Type 9, and Type 10 is a result of 

the effect of the communication that occurs in Type 5, Type 6, and Type 7 respectively. 

For example, in Type 5, as the diagonal nodes do not have direct links between them, 

the packet has to move through other switch (not belonging to the same diagonal under 

study) to reach the next diagonal node. This kind of movement leads to affecting 

switches other than the diagonal under study switches. Types 8, 9, and 10 are concerned 

with such effect.  

Also, as Type 6 and Type 7 involve row and column movement respectively beside 

the diagonal movement; other non-diagonal (row and column) switches are affected by 

such communication behavior. Type 11 and Type 12 are concerned with the effect 

caused on row and column switches by Type 6 and Type 7 respectively. 

Concerning the analysis, we note the following; since the communication behavior 

on increasing diagonal is similar to the one done on decreasing diagonal, we focus our 

analysis on increasing diagonals only. Additionally, as Type 6 and Type 7 are similar, 

we analyze Type 6 in details. Following the same analysis, the equations related to 

Type 7 are straight forward. This relation resembles the relation between Type 8, Type 

9, and Type 10, and between Type 11 and Type 12. Finally, for all the types except 

Type 8, Type 9, and Type 10, we derive equations for counting the number of packets 

passing through a switch as a result of the type under study. For Type 8, Type 9, and 

Type 10, we count the number of passing packets using pseudo code not equation for 

its easier analysis and explanation. 

For the analysis, we use the following terminology: For an nn  mesh, let W(i,j) be 

a switch located at index, where 1   i, j   n, and index is the position of the switch in a 

NoC row or column or diagonal based on the traffic type under study. Let P be a packet 

going from source node S(XSrc, YSrc) to destination D(XDst, YDst). Let    
|         | and    |         |. Now, we present the traffic 12 types going 

through W(i,j). In each type, we describe the communication behavior, and the number 

of packets (denoted as Count) passing through switch W(i,j) as a result of the type 

under study. 

3.2.1. Type 1 Packets 

Description: Packets destined to node W(i,j). 

Count:        
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Figure 8: Location of W(i,j) in 2D mesh row  

Proof: Since there are n
2
-1 nodes sending packets to node W(i,j) as their 

destination (check the assumptions), then the number of packets passing through 

switch W(i,j) is equal to the number of packets ejected to node W(i,j). 

    

3.2.2. Type 2 Packets 

Description: Packets injected by node W(i,j). 

Count:        
Proof: Since node W(i,j) is sending one packet to each of the remaining n

2
-1 nodes 

(check the assumptions), then the number of packets passing through switch W(i,j) 

is equal to the number of packets injected by node W(i,j). 

    

3.2.3. Type 3 Packets 

Description: Packets passing through W(i,j) injected by node (i,k) and destined to 

node (i,m) where 1   k, m   n and j   k   m (i.e. same row  communication). 

Count:                     

Where index is the position of W(i,j) in the row under study,          .   

Proof: In this type, as shown in Figure 8, switch W(i,j) belongs to a 2D mesh row 

at position index. We have (index - 1) nodes before node W(i,j) and (n - index) 

nodes after node W(i,j).  

For the same row communication, the number of packet passing through switch 

W(i,j) is a result of the following:  

1) The nodes before W(i,j) send packets to the nodes after W(i,j) i.e. (index - 1) 

* (n - index) packets. 

2) The nodes after W(i,j) send packets to the  nodes before W(i,j) i.e. (n - 

index) * (index - 1) packets.  

Hence, the overall count is 2 * (index - 1) * (n - index) packets.   

  
 

Examples for illustrating traffic type three are shown in both Figure 9 and Figure 

10. Figure 9 shows the value of index and Count for each row switch in 5x5 and 

6x6 meshes. Also, it shows the number of packet passing through each switch as a 

result of this traffic type. On the other hand, Figure 10 shows an example on how 

to calculate the number of passing packets for a row switch in a 5x5 mesh. In 

Figure 10, the number of packets passing through switch B(      = 2,   = 5) 

equals 6 due to node A sending packets to nodes (C, D, E) i.e. 3 in addition to (C, 

D, E) sending packets to A i.e. 3.   
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Figure 9: Type 3 example for a row in 5x5 and 6x6 meshes 

 

Figure 10: Type 3 Count calculation for a row switch in a 5x5 mesh 

3.2.4. Type 4 Packets 

Description: Packets passing through W(i,j) injected by node (k,j) and destined to 

node (m,j) where 1   k, m   n and i   k   m (i.e. same column communication).
 1

 

Count:                      

Where index is the position of W(i,j) in the column under study,          .   

Proof: The proof for this type is similar to the proof of Type 3. 

3.2.5. Type 5 Packets 

Description: Packets passing through W(i,j) as a result of communication between 

nodes on the same diagonal as node W(i,j). 

Count: 






 

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

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indexCountCount DownUp
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Where    is the number of nodes in the diagonal under study,       ; index is 

the position of W(i,j) in the diagonal under study,           ; and    is the 

value of the step size. 

 

This equation counts the number of packets passing through a given increasing 

diagonal switch W(i,j) under up traffic and down traffic.
 2

 

                                                           
1
 Type 1, 2, 3, and 4 are not related to MaxFlex selection function only as these types will occur in 

almost all routing algorithms under the same assumptions. In other words, no step size is involved in the 
2
 Any of the following analysis (and proof) can be applied to both increasing and decreasing diagonals. 
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Figure 11: Location of W(i,j) in 2D mesh diagonal 

Proof: We consider increasing diagonal for the proof; however, the same proof 

applies to decreasing diagonal. In this type, as shown in Figure 11, switch W(i,j) 

belongs to a 2D mesh diagonal with    nodes. Switch W(I,j) is at position index. 

We have (index - 1) nodes before node W(i,j) and (   - index) nodes after node 

W(i,j).  

For the same diagonal communication, the number of packets passing through 

switch W(i,j) is a result of the following:  

1) Under up traffic, some of the nodes after node W(i,j) send packets to the  

nodes before W(i,j) based on the step size SS used. Specifically, ⌊
          

  
⌋ 

nodes after W(i,j) send packets to the nodes before W(i,j). Hence, the 

number of packets is (index - 1) * ⌊
          

  
⌋ packets.  

2) Under down traffic, some of the nodes before node W(i,j) send packets to 

the nodes after W(i,j) based on the step size SS used. Specifically, ⌊
         

  
⌋ 

nodes before W(I,j) send packets to the nodes after W(i,j). Hence, the 

number of packets is (   - index) * ⌊
         

  
⌋ packets. 

Thus, the overall count is (index - 1) * ⌊
          

  
⌋ + (   - index) * 

⌊
         

  
⌋ packets. 
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Figure 12: Type 5 example for an increasing diagonal 

Table 1: Up traffic passing through switch C 

Source → Destination Pass W(i,j) or Not 

D → B × 

D → A × 

E → B Pass 

E → A Pass 

F → B × 

F → A × 

 

In order to illustrate the Count calculations, in Figure 12, we show the up traffic 

passing through switch C(  = 3,    = 6) i.e. traffic from (D, E, F) to (A, B) using step 

size of two. Table 1 lists all the communication from (D, E, F) to (A, B) and whether 

the packets to (A, B) will pass switch C or not.  

Table 1 states that only two packets pass the red switch under up traffic i.e. Count 

= 2. Also, applying the up traffic Count equation, the number of packets passing 

through the switch C is two i.e. Count = 2 which matches the value deduced from Table 

1. 

Table 2 shows the Count values for the diagonal switches using different step sizes 

under up traffic.  

In a similar manner, in Figure 12, the down traffic passing through switch C(  = 3, 

   = 6) i.e. traffic from (A, B) to (D, E, F) using step size of two. Table 3 lists all the 

communication from (A, B) to (D, E, F) and whether the packets to (D, E, F) will pass 

switch C or not.  
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Table 2: Type 5 Count calculation for an increasing diagonal switches under up 

traffic using different SS values 

index SS = 1 SS = 2 SS = 3 

1 0 0 0 

2 4 2 1 

3 6 2 2 

4 6 3 0 

5 4 0 0 

6 0 0 0 

Table 3: Down traffic passing through switch C 

Source → Destination Pass W(i,j) or Not 

A → D Pass 

A → E Pass 

A → F Pass 

B → D × 

B → E × 

B → F × 

Table 4: Type 5 Count calculation for an increasing diagonal switches under down 

traffic using different SS values 

index SS = 1 SS = 2 SS = 3 

1 0 0 0 

2 4 0 0 

3 6 3 0 

4 6 2 2 

5 4 2 1 

6 0 0 0 

 

Table 3 states that three packets pass the red switch under down traffic i.e. Count = 

3. Also, applying the down traffic Count equation, the number of packets passing 

through switch C is three i.e. Count = 3 which matches the value deduced from Table 3. 

Table 4 shows the Count values for the diagonal switches using different step sizes 

under down traffic. 
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Figure 13: Type 6 example for an increasing diagonal under both up and down 

traffics 

3.2.6. Type 6 Packets 

Description: Packets passing through W(i,j) as a result of communication destined 

to nodes on the same diagonal as node W(i,j)  from nodes with YX  (i.e. leads 

to moving on a row first).
 3

 

 

Figure 13 shows an example for the up and down traffic on increasing diagonal 

under traffic Type 6. We divide the discussion of Type 6 into four separate sub-types to 

ease the calculation for each of them. The sub-types are listed in the following sub-

sections.  

3.2.6.1. Type 6 (a) 

Description: Packets passing through switch W(i,j) as a result of row nodes 

communicating with nodes with lower index on increasing diagonal i.e. up traffic. 

Count: )
mod)(

1()1(
'











 


n

indexx SS

SSindexx
Qindex  

If diagonal is below main diagonal i.e. ijn 1  

xnQ   
Else 

xnQ  '  
                                                           
3
 Types 6 and 7 are based on the behavior of any two nodes communicating using MaxFlex (except for 

same row and column communication). In other words, any two communicating nodes will have to move 

on a diagonal.  



 

26 
 

 

Figure 14: Location of W(i,j) in 2D mesh diagonal 

Where    is the number of nodes in the diagonal under study,       ; index is 

the position of W(i,j) in the diagonal under study,           ; and    is the 

value of the step size. 

Proof: We consider increasing diagonal for the proof; however, the same proof 

applies to decreasing diagonal. In this type, we follow the same steps as in Type 5. 

However, in Type 6, we focus on the communication between the row nodes and 

the diagonal nodes. 

In this type, as shown in Figure 14, switch W(i,j) belongs to a 2D mesh diagonal 

with    nodes at position index. We have (index - 1) diagonal nodes before node 

W(i,j) and (   - index) diagonal nodes after W(i,j). Also, there are (n – index) on the 

same row as W(i,j) before node W(i,j).  

For this type, under up traffic, each of the row nodes belonging to the (   - index) 

diagonal nodes after W(i,j) send packets to the (index - 1) diagonal nodes before 

node W(i,j). For each of the diagonal nodes X(k,m) at position        after W(i,j), if 

X(k,m) communication with the (index - 1) nodes before W(i,j) passes through 

W(i,j), then the row nodes belonging to the same row as the given node shall pass 

W(i,j) as well i.e.           nodes. Hence, the overall count for each of X(k,m) 

in case it passes through W(i,j) is (index - 1) *            packets. 

    
 

In order to illustrate the Count calculations, in Figure 13, we show the up traffic 

passing through switch CSolid(  = 3,   = 7,    = 6) i.e. traffic from row nodes before 

(CSolid, DSolid, ESolid) to (ASolid, BSolid) using step size of two. Table 5 lists all the 

communication from (CSolid, DSolid, ESolid) rows to (ASolid, BSolid) and whether the packets 

to (ASolid, BSolid) will pass switch CSolid or not.  
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Table 5: Up traffic passing through switch CSolid  

Source → Destination Pass W(i,j) or Not 

RowSolidC  → SolidA  Pass 

RowSolidC  → SolidB  Pass 

RowSolidD  → SolidA  × 

RowSolidD  → SolidB  × 

RowSolidE  → SolidA  Pass 

RowSolidE  → SolidB  Pass 

Table 6: Type 6(a) Count calculation for the solid diagonal switches under up 

traffic using different SS values 

index SS = 2 SS = 3 

1 0 0 

2 (5 + 3) (5 + 2) 

3 (4 + 2) + (4 +2) (4) + (4) 

4 (3) + (3) + (3) (3) + (3) + (3) 

5 (2) + (2) + (2) + (2) (2) + (2) + (2) + (2) 

Table 7: Type 6(a) Count calculation for the dotted diagonal switches under up 

traffic using different SS values 

index SS = 2 SS = 3 

1 0 0 

2 (3 + 1) (3) 

3 (2) + (2) (2) + (2) 

4 (1) + (1) + (1) (1) + (1) + (1) 

5 0 0 

 

Table 5 states that twelve packets pass switch CSolid under up traffic (Count = 4 + 4 

+ 2 + 2 = 12). Also, applying the Count equation, the number of packets passing 

through switch CSolid is twelve (Count = (3 – 1) * ((7 – 3) * 1 + (7 – 4) * 0 + (7 – 5) * 1) 

= 2 * (4 + 0 + 2) = 12) which matches to the value deduced from Table 5. 

We show the Count values for the solid and dotted diagonal switches under up 

traffic using different step sizes in Table 6 and Table 7 respectively. 

3.2.6.2. Type 6 (b) 

Description: Packets passing through switch W(i,j) as a result of row nodes 

communicating with nodes with higher index on increasing diagonal i.e. down 

traffic. 

Count: )
mod)(

1()'(
1











 


index

x SS

SSxindex
Qindexn  
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Table 8: Down traffic communication passing through switch DDotted 

Source → Destination Pass W(i,j) or Not 

RowDottedA  → DottedE  Pass 

RowDottedB  → DottedE  × 

RowDottedC  → DottedE  × 

RowDottedD  → DottedE  Pass 

Table 9: Type 6(b) Count calculation for the dotted diagonal switches under down 

traffic using different SS values 

index SS = 2 SS = 3 

1 (2) + (2) + (2) + (2) (2) + (2) + (2) + (2) 

2 (3) + (3) + (3) (3) + (3) + (3) 

3 (2 + 4) + (2 + 4) (4) + (4) 

4 (3 + 5) (2 + 5) 

5 0 0 

Table 10: Type 6(b) Count calculation for the solid diagonal switches under down 

traffic using different SS values 

index SS = 2 SS = 3 

1 0 0 

2 (1) + (1) + (1) (1) + (1) + (1) 

3 (2) + (2) (2) + (2) 

4 (1 + 3) (3) 

5 0 0 

 

If diagonal is above main diagonal i.e. ijn 1  

'1 nnxQ   
Else 

1 xQ  
Where    is the number of nodes in the diagonal under study,       ; index is 

the position of W(i,j) in the diagonal under study,           ; and    is the 

value of the step size. 

Proof: The proof for this type is similar to the proof of Type 6(a). 

 

In order to illustrate the Count calculations, in Figure 13, we show the down traffic 

passing through switch DDotted(  = 4,   = 7,    = 5) i.e. traffic from row nodes before 

(ADotted, BDotted, CDotted, DDotted) to EDotted using step size of three. Table 8 lists all the 

communication from (ADotted, BDotted, CDotted, DDotted) rows to EDotted and whether the 

packets to EDotted will pass switch DDotted or not.  

Table 8 states that seven packets pass switch DDotted under down traffic (Count = 2 

+ 5 = 7). Also, applying the Count equation, the number of packets passing through 

switch DDotted is twelve (Count = (5 – 4) * (2 * 1 + 3 * 0 + 4 * 0 + 5 * 1) = 1 * (2 + 5) = 

7) which matches to the value deduced from Table 8. 
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We show the Count values for the dotted and solid diagonal switches under up 

traffic using different step sizes in Table 9 and Table 10 respectively. 

3.2.6.3. Type 6 (c) 

Description: Packets passing through switch W(i,j) as a result of row nodes 

communicating with nodes with lower index on decreasing diagonal i.e. up traffic.
4
 

Count: )
mod)(

1()1(
'











 


n

indexx SS

SSindexx
Qindex  

If diagonal is above main diagonal i.e. ij   

xnQ   
Else 

xnQ  '  

Where    is the number of nodes in the diagonal under study,       ; index is 

the position of W(i,j) in the diagonal under study,           ; and    is the 

value of the step size. 

Proof: The proof for this type is similar to the proof of Type 6(a). 

3.2.6.4. Type 6 (d) 

Description: Packets passing through switch W(i,j) as a result of row nodes 

communicating with nodes with higher index on decreasing diagonal i.e. down 

traffic. 

Count: )
mod)(

1()'(
1











 


index

x SS

SSxindex
Qindexn  

If diagonal is below main diagonal i.e. ij   

'1 nnxQ   

Else 

1 xQ  

Where    is the number of nodes in the diagonal under study,       ; index is 

the position of W(i,j) in the diagonal under study,           ; and    is the 

value of the step size. 

Proof: The proof for this type is similar to the proof of Type 6(a). 

3.2.7. Type 7 Packets 

Description: Packets passing through W(i,j) as a result of communication destined 

to nodes on the same diagonal as node W(i,j)  from nodes with YX  (i.e. leads 

to moving on a column first).
5
 

                                                           
4
 Types 6(c) and 6(d) are same as 6(a) and 6(b) but for decreasing diagonals.  

5
 Type 7 is similar to Type 6 but for column nodes instead of row nodes.  
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Figure 15: Type 7 example for an increasing diagonal under both up and down 

traffics 

Figure 15 shows an example for the up and down traffic on increasing diagonal 

under traffic Type 7. We divide the discussion of Type 7 into four separate sub-types to 

ease the calculation for each of them. The sub-types are listed in the following sub-

sections. 

3.2.7.1. Type 7 (a) 

Description: Packets passing through switch W(i,j) as a result of column nodes 

communicating with nodes with lower index on increasing diagonal i.e. up traffic. 

Count: )
mod)(

1()1(
'











 


n

indexx SS

SSindexx
Qindex  

If diagonal is above main diagonal i.e. ijn 1  

xnQ   

Else 

xnQ  '  

Where    is the number of nodes in the diagonal under study,       ; index is 

the position of W(i,j) in the diagonal under study,           ; and    is the 

value of the step size. 

Proof: The proof for this type is similar to the proof of Type 6(a). 

3.2.7.2. Type 7 (b) 

Description: Packets passing through switch W(i,j) as a result of column nodes 

communicating with nodes with higher index on increasing diagonal i.e. down 

traffic. 

Count: )
mod)(

1()'(
1











 


index

x SS

SSxindex
Qindexn  
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If diagonal is below main diagonal i.e. ijn 1  

'1 nnxQ   

Else 

1 xQ  

Where    is the number of nodes in the diagonal under study,       ; index is 

the position of W(i,j) in the diagonal under study,           ; and    is the 

value of the step size. 

Proof: The proof for this type is similar to the proof of Type 6(a). 

3.2.7.3. Type 7 (c) 

Description: Packets passing through switch W(i,j) as a result of column nodes 

communicating with nodes with lower index on decreasing diagonal i.e. up traffic. 

Count: )
mod)(

1()1(
'











 


n

indexx SS

SSindexx
Qindex  

If is diagonal below main diagonal i.e. ij   

xnQ   

Else 

xnQ  '  

Where    is the number of nodes in the diagonal under study,       ; index is 

the position of W(i,j) in the diagonal under study,           ; and    is the 

value of the step size. 

Proof: The proof for this type is similar to the proof of Type 6(a). 

3.2.7.4. Type 7 (d) 

Description: Packets passing through switch W(i,j) as a result of column nodes 

communicating with nodes with higher index on decreasing diagonal i.e. down 

traffic. 

Count: )
mod)(

1()'(
1











 


index

x SS

SSxindex
Qindexn  

If diagonal is above main diagonal i.e. ij   

'1 nnxQ   

Else 

1 xQ  

Where    is the number of nodes in the diagonal under study,       ; index is 

the position of W(i,j) in the diagonal under study,           ; and    is the 

value of the step size. 

Proof: The proof for this type is similar to the proof of Type 6(a). 

3.2.8. Type 8 Packets 

Description: Packets passing through W(i,j) as a result of communication between 

nodes on a diagonal other than node W(i,j) diagonal.
6,7 

                                                           
6
 Types 8, 9, 10, 11 & 12 are concerned by the effect of adjacent nodes (row, column, diagonal) 

communication on other nodes. 
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Figure 16: Type 8 example for an increasing diagonal in a 12x12 mesh 

In this type, we start with an illustrating example instead of the order followed in 

the previous sections of the analysis. From the example, we deduce the general 

relations for this type.  

In order to understand the effect and the behavior of some communicating nodes 

on other switches and depending on the MaxFlex selection function default behavior 

(i.e. move on X then Y), we check X  between the switch under study and the node 

originating the traffic.  

In Figure 16, Consider switch A(              = 4,          = 1,   = 12,    = 

10) and the switches on the left of it, where    is the number of nodes in the diagonal 

originating traffic,       ;               is the position of W(i,j) row in the 

diagonal originating traffic,                   ;          is the distance (number 

of steps in X-dimension) from switch W(i,j) to the diagonal originating traffic; and    is 

the value of the step size. From Figure 16, we list the ( X , Y ) for the nodes 

originating the traffic that affect the switch under study (switch A + switches on the 

left) under down traffic in tables 11, 13, 14, and 15. Each of these tables is divided into 

                                                                                                                                                                         
7
 The next analysis is the same for increasing and decreasing diagonals. Also, it is the same for up and 

down traffic in the number of reached nodes formula. 
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Table 11: Down traffic passing through switch A 

         = 1 (Switch A) 

SS = 1 SS = 2 SS = 3 SS = 4 

All (1,0) Right All (1,0) Right All (1,0) Right All (1,0) Right 

All (2,1) Right All (2,1) Up One (2,1) Up One (2,1) Up 

All (3,2) Right All (3,2) Right All (3,2) Up One (3,2) Up 

All (4,3) Right All (4,3) Up All (4,3) Right All (4,3) Up 

All (5,4) Right All (5,4) Right One (5,4) Up All (5,4) Right 

Table 12: Summary for the data collected in Table 11 

          = 1 

X 8mod SS Number of Nodes Reached 

0 All 

1 All 

2 One 

3 One 

> 3 One 

Table 13: Down traffic passing through switch B 

         = 2 (Switch B) 

SS = 2 SS = 3 SS = 4 

All (2,0) Right All (2,0) Right All (2,0) Right 

× (3,1) × All (3,1) Up One (3,1) Up 

All (4,2) Right × (4,2) × All (4,2) Up 

× (5,3) × All (5,3) Right X (5,3) × 

All (6,4) Right All (6,4) Up All (6,4) Right 

 

a group of columns for each step size value. Each group lists ( X , Y ) values for all 

the originating nodes, how many diagonal nodes reached, and the port used to reach 

these nodes. 

From Table 11, we summarize the collected data based on X mod SS. The 

summary lists all the values for X mod SS and whether any diagonal nodes are 

reached or not. In case of reaching diagonal nodes, Table 12 lists the number of the 

reached nodes.   

From Table 12, we notice that if the X mod SS is zero or one, then all of the 

intended diagonal nodes can be reached. However, if X mod SS is greater than one, 

only one diagonal node can be reached. The following relations summarize out 

findings. 

 

 

                                                           
8
 We monitored X value due to MaxFlex selection function default behavior i.e. move on X then Y. 
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Table 14: Down traffic passing through switch C 

         = 3 (Switch C) 

SS = 3 SS = 4 

All (3,0) Right All (3,0) Right 

× (4,1) × All (4,1) Up 

× (5,2) × × (5,2) × 

All (6,3) Right × (6,3) × 

× (7,4) × All (7,4) Right 

Table 15: Down traffic passing through switch D 

         = 4 (Switch D) 

SS = 4 

All (4,0) Right 

× (5,1) × 

× (6,2) × 

× (7,3) × 

All (8,4) Right 

 

X mod SS   (0,1) then All
9
 

X mod SS > 1 then One
10

 

 

From Table 13 and in a similar manner to what was done in Table 11, we notice 

that if the X mod SS is zero or two, then all of the intended diagonal nodes can be 

reached. Also, if X mod SS equals one, then none of the diagonal nodes can be 

reached. Finally, if X mod SS is greater than two, only one diagonal node can be 

reached. The following relations summarize out findings. 

 

X mod SS  (0,2) then All
11

 

X mod SS = 1 then × (Zero) 

X mod SS > 2 then One 

 

Similarly, in Table 14 and Table 15, we summarize our findings concerning X

mod SS and the number of diagonal nodes reached in the relations following each table. 

From Table 14, we notice the following relations. 

 

X mod SS  (0,3) then All
12

 

X mod SS  (1,2) then × (Zero) 

X mod SS > 3 then One 

 

From Table 15, we notice the following relations. 

  

                                                           
9
 Reach all nodes below or on same row as the switch under study (in this case 5 nodes) 

10
 Reach the node on the same column only  

11
 Reach all nodes below or on the same row as the switch under study (in this case 4 nodes) 

12
 Reach all nodes below or on the same row as the switch under study (in this case 3 nodes) 
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Procedure Count 

Inputs: i, j, SS, Xsrc, Xdst  

Outputs: Count 

Count = 0 

// Nodes on diagonal 

for i = 1 to n'  

 // Nodes affected by nodes on diagonal from i to n' 

 for j = 1 to SS  

  // Nodes originating the traffic  

  for index = i to n'  

   if (ΔX mod SS )   (0, j) 

    Count += (i – j)  

   else if (ΔX mod SS > j) 

    Count += 1  

Figure 17: Procedure for counting the packets passing through a switch for Type 

8(a) 

X mod SS  (0,4) then All
13

 

X mod SS   (1,2,3) then × (Zero) 

X mod SS > 4 then One 

 

In order to generalize for         , we consider all the relations deduced for each 

         value discussed in the previous tables. From these tables and the deduced 

relations, in Table 16, we calculate the number of reached diagonal nodes under up and 

down traffic. Also, we calculate the X and Y index of the switch under study i.e. the 

switch we calculate the number of passing packets for. 

Additionally, we generalize the relations for          under up and down traffic. 

 

X mod SS  (0,         ) then All 

X mod SS  (1,2 …         -1) then × (Zero) 

X mod SS >          then One 

 

For Type 8, we represent the formulas in form of pseudo code not an equation for 

easier analysis and explanation. We present pseudo code for up traffic and other for 

down traffic in the following sub-sections. 

3.2.8.1. Type 8 (a) 

Description: Packets passing through W(i,j) as a result of up traffic communication 

between nodes on a diagonal other than node W(i,j) diagonal. This sub-type studies 

the effect of Type 5 under up traffic on the switches adjacent to a given diagonal. 

Count: To calculate the number of packets passing through a switch under up 

traffic, we use the pseudo code in Figure 17.  

                                                           
13
 Reach all nodes below or on the same row as the switch under study (in this case 2 nodes) 



 

36 
 

Procedure Count 

Inputs: i, j, SS, Xsrc, Xdst  

Outputs: Count 

Count = 0 

// Nodes on diagonal 

for i = 1 to n'  

 // Nodes affected by nodes on diagonal from 1 to i 

 for j = 1 to SS  

  // Nodes originating the traffic  

  for index = 1 to i  

   if (ΔX mod SS )   (0, j) 

    Count += (n' – i – j + 1)  

   else if (ΔX mod SS > j) 

    Count += 1  

Figure 18: Procedure for counting the packets passing through a switch for Type 

8(b) 

3.2.8.2. Type 8 (b) 

Description: Packets passing through W(i,j) as a result of down traffic 

communication between nodes on a diagonal other than node W(i,j) diagonal. This 

sub-type studies the effect of Type 5 under down traffic on the switches adjacent to 

a given diagonal. 

Count: To calculate the number of packets passing through a switch under down 

traffic, we use the pseudo code in Figure 18.  

3.2.9. Type 9 Packets 

Description: Packets passing through W(i,j) as a result of communication destined 

to nodes on a diagonal other than node W(i,j) diagonal from nodes with YX 

.
14

 

 

Similar to what was done in Type 8, for Type 9; we represent the formulas in form 

of pseudo code for up traffic and down traffic in the following sub-sections. 

3.2.9.1. Type 9 (a, c) 

Description: Packets passing through W(i,j) as a result of up traffic communication 

destined to nodes on a diagonal other than node W(i,j) diagonal from nodes with 

YX  . This sub-type studies the effect of sub-type 6(a) and sub-type 6(b) on 

the switches adjacent to a given diagonal. 

Count: To calculate the number of packets passing through a switch under up 

traffic, we use the pseudo code in Figure 19.  

 

                                                           
14
 Type 9 and Type 10 analysis is the same as Type 8. 
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Procedure Count 

Inputs: i, j, SS, Xsrc, Xdst  

Outputs: Count 

Count = 0 

// Nodes on diagonal 

for i = 1 to n'  

 // Nodes affected by nodes on diagonal from i to n' 

 for j = 1 to SS  

  // Nodes originating the traffic after and including index node 

  for index = i to n'  

   if (ΔX mod SS )   (0, j) 

    Count += (i – j) * Multiplier  

   else if (ΔX mod SS > j) 

    Count += Multiplier  

Figure 19: Procedure for counting the packets passing through a switch for Type 

9(a, c) 

Where for increasing diagonal 

If diagonal is below main diagonal i.e. 
xy NodeNoden 1  

indexnMultiplier   

Else 

indexnMultiplier  '  

And for decreasing diagonal 

If diagonal is above main diagonal i.e. 
xy NodeNode   

indexnMultiplier   

Else 

indexnMultiplier  '  

Where    is the number of nodes in the diagonal originating traffic,       ; 

      is the X index of the node belonging to both the diagonal originating the 

traffic and W(i,j) row; and       is the Y index of the node belonging to both the 

diagonal originating the traffic and W(i,j) row. 

Proof: The proof for this type is similar to the proof of Type 8. 

3.2.9.2. Type 9 (b, d) 

Description: Packets passing through W(i,j) as a result of down traffic 

communication destined to nodes on a diagonal other than node W(i,j) diagonal 

from nodes with YX  . This sub-type studies the effect of sub-type 6(b) and 

sub-type 6(d) on the switches adjacent to a given diagonal. 

Count: To calculate the number of packets passing through a switch under down 

traffic, we use the pseudo code in Figure 20.  
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Procedure Count 

Inputs: i, j, SS, Xsrc, Xdst  

Outputs: Count 

Count = 0 

// Nodes on diagonal 

for i = 1 to n'  

 // Nodes affected by nodes on diagonal from 1 to i 

 for j = 1 to SS  

  // Nodes originating the traffic before and including index node 

  for index = 1 to i  

   if (ΔX mod SS )   (0, j) 

    Count += (n' – i – j + 1) * Multiplier  

   else if (ΔX mod SS > j) 

    Count += Multiplier  

Figure 20: Procedure for counting the packets passing through a switch for Type 

9(b, d) 

Where for increasing diagonal   

If diagonal is above main diagonal i.e. 
xy NodeNoden 1  

'1 nnindexMultiplier   

Else 

1 indexMultiplier  

And for decreasing diagonal 

If diagonal is below main diagonal i.e. 
xy NodeNode   

'1 nnindexMultiplier   

Else 

1 indexMultiplier  

Where    is the number of nodes in the diagonal originating traffic,       ; 

      is the X index of the node belonging to both the diagonal originating the 

traffic and W(i,j) row; and       is the Y index of the node belonging to both the 

diagonal originating the traffic and W(i,j) row. 

Proof: The proof for this type is similar to the proof of Type 8. 

3.2.10. Type 10 Packets 

Description: Packets passing through W(i,j) as a result of communication destined 

to nodes on a diagonal other than node W(i,j) diagonal with from nodes with 

YX  . 

 

Similar to what was done in Type 8 and Type 9, for Type 10; we represent the 

formulas in form of pseudo code for up traffic and down traffic in the following sub-

sections. 

3.2.10.1. Type 10 (a, c) 

Description: Packets passing through W(i,j) as a result of up traffic communication 

destined to nodes on a diagonal other than node W(i,j) diagonal with from nodes 

with YX  . This sub-type studies the effect of sub-type 7(a) and sub-type 7(c) 

on the switches adjacent to a given diagonal. 
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Procedure Count 

Inputs: i, j, SS, Xsrc, Xdst  

Outputs: Count 

Count = 0 

// Nodes on diagonal 

for i = 1 to n'  

 // Nodes affected by nodes on diagonal from i to n' 

 for j = 1 to SS  

  // Nodes originating the traffic after and including index node 

  for index = i to n'  

   if (ΔX mod SS )   (0, j) 

    Count += (i – j) * Multiplier  

   else if (ΔX mod SS > j) 

    Count += Multiplier  

Figure 21: Procedure for counting the packets passing through a switch for Type 

10(a, c) 

Count: To calculate the number of packets passing through a switch under up 

traffic, we use the pseudo code in Figure 21.  

 

Where for increasing diagonal 

If diagonal is above main diagonal i.e. 
xy NodeNoden 1  

indexnMultiplier   

Else 

indexnMultiplier  '  

And for decreasing diagonal 

If diagonal is below main diagonal i.e. 
xy NodeNode   

indexnMultiplier   

Else 

indexnMultiplier  '  

Where    is the number of nodes in the diagonal originating traffic,       ; 

      is the X index of the node belonging to both the diagonal originating the 

traffic and W(i,j) row; and       is the Y index of the node belonging to both the 

diagonal originating the traffic and W(i,j) row. 

Proof: The proof for this type is similar to the proof of Type 8. 

3.2.10.2. Type 10 (b, d) 

Description: Packets passing through W(i,j) as a result of down traffic 

communication destined to nodes on a diagonal other than node W(i,j) diagonal 

with from nodes with YX  . This sub-type studies the effect of sub-type 7(b) 

and sub-type 7(d) on the switches adjacent to a given diagonal. 

Count: To calculate the number of packets passing through a switch under down 

traffic, we use the pseudo code in Figure 22.  

 



 

41 
 

Procedure Count 

Inputs: i, j, SS, Xsrc, Xdst  

Outputs: Count 

Count = 0 

// Nodes on diagonal 

for i = 1 to n'  

 // Nodes affected by nodes on diagonal from 1 to i 

 for j = 1 to SS  

  // Nodes originating the traffic before and including index node 

  for index = 1 to i  

   if (ΔX mod SS )   (0, j) 

    Count += (n' – i – j + 1) * Multiplier  

   else if (ΔX mod SS > j) 

    Count += Multiplier  

Figure 22: Procedure for counting the packets passing through a switch for Type 

10(b, d) 

Where for increasing diagonal   

If diagonal is below main diagonal i.e. 
xy NodeNoden 1  

'1 nnindexMultiplier   

Else 

1 indexMultiplier  

And for decreasing diagonal 

If diagonal is above main diagonal i.e. 
xy NodeNode   

'1 nnindexMultiplier   

Else 

1 indexMultiplier  

Where    is the number of nodes in the diagonal originating traffic,       ; 

      is the X index of the node belonging to both the diagonal originating the 

traffic and W(i,j) row; and       is the Y index of the node belonging to both the 

diagonal originating the traffic and W(i,j) row. 

Proof: The proof for this type is similar to the proof of Type 8. 

3.2.11. Type 11 Packets 

Description: Packets passing through W(i,j) as a result of communication between 

node (i,k) from same row as node W(i,j) and nodes on node (i,m) diagonal where 1 
  k, m   n and j   k   m. 

 

We divide the discussion of Type 11 into four separate sub-types to ease the 

calculation for each of them. The sub-types are listed in the following sub-sections. 

3.2.11.1. Type 11 (a) 

Description: Packets passing through switch W(i,j) as a result of same row nodes 

communicating with nodes with lower index on increasing diagonal i.e. up traffic. 

Count: )1)(1(  DiagonalRow indexindex  

Where    is the number of nodes in the diagonal originating traffic,       ; 

              is the position of switch W(i,j) row in the destination diagonal, 
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Figure 23: Location of W(i,j) in 2D mesh  

                  ; and          is the position of W(i,j) in the row 

originating traffic,             . 

If diagonal is below main diagonal i.e. 
xy NodeNoden 1  

DiagonalindexnL   

Else 

DiagonalindexnL  '
 

Where       is the X index of the node belonging to both the destination diagonal 

and W(i,j) row; and       is the Y index of the node belonging to both the 

destination diagonal and W(i,j) row. 

Proof: We consider increasing diagonal for the proof; however, the same proof 

applies to decreasing diagonal. In this type, we follow the same steps as in Type 6. 

However, in Type 11, we focus on the effect of the same row nodes 

communication with the diagonal nodes. 

In this type, as shown in Figure 23, switch X(k,m) belongs to a 2D mesh diagonal 

with    nodes at position               (denoted index in Figure 23). We have 

(               ) diagonal nodes before node X(k,m) and (                 ) 

diagonal nodes after X(k,m). Also, there are (               ) on the same row 

as X(k,m) before node X(k,m). Let switch W(i,j) belongs to one of these (  
             ) nodes at position          (denoted        in Figure 23) with 

(          ) nodes before it on the same row. 

For this type, under up traffic, each of the (               ) nodes belonging to 

the same row as X(k,m) send packets to the (index - 1) diagonal nodes before node 

X(k,m). Since W(i,j) is one of these nodes, then each of the packets sent by the 

(          ) before W(i,j) in the same row passes through W(i,j). Since each 

node sends only one packet to each of the NoC nodes (check the assumptions), the 
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Figure 24: Type 11 example for an increasing diagonal under both up and down 

traffics 

Table 16: Up traffic passing through switch ZSolid 

Source → Destination Pass W(i,j) or Not 

XSolid → A Pass 

YSolid → A Pass 

 

overall count for the packets passing through W(i,j) is (          ) * 

(               ) packets. 

    
 

In order to illustrate the Count calculations, in Figure 24, we show the up traffic 

from the nodes on the same row as switch ZSolid(              = 2,          = 3,   = 

5,    = 5) i.e. traffic from (XSolid, YSolid) to A. Table 17 lists all the communication from 

(XSolid, YSolid) to A and whether the packets to A will pass switch ZSolid or not. 

Table 17 states that two packets pass switch ZSolid under up traffic (Count = 2). 

Also, applying the Count equation, the number of packets passing through switch ZSolid 

is two (Count = (3 – 1) * (2 – 1) = 2 * 1 = 2) which matches to the value deduced from 

Table 17. 

3.2.11.2. Type 11 (b) 

Description: Packets passing through switch W(i,j) as a result of same row nodes 

communicating with nodes with higher index on increasing diagonal i.e. down 

traffic. 

Count: )')(1( DiagonalRow indexnindex   

Where    is the number of nodes in the diagonal originating traffic,       ; 

              is the position of switch W(i,j) row in the destination diagonal, 
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                  ; and          is the position of W(i,j) in the row 

originating traffic,             . 

If diagonal is above main diagonal i.e. 
xy NodeNoden 1  

'1 nnindexL Diagonal   

Else 

1 DiagonalindexL
 

Where       is the X index of the node belonging to both the destination diagonal 

and W(i,j) row; and       is the Y index of the node belonging to both the 

destination diagonal and W(i,j) row.
 

Proof: The proof for this type is similar to the proof of Type 11(a). 

3.2.11.3. Type 11 (c) 

Description: Packets passing through switch W(i,j) as a result of same row nodes 

communicating with nodes with lower index on increasing diagonal i.e. up traffic. 

Count: )1)(1(  DiagonalRow indexindex  
Where    is the number of nodes in the diagonal originating traffic,       ; 

              is the position of switch W(i,j) row in the destination diagonal, 

                  ; and          is the position of W(i,j) in the row 

originating traffic,             . 

If diagonal is above main diagonal i.e. 
xy NodeNode   

DiagonalindexnL   

Else 

DiagonalindexnL  '  

Where       is the X index of the node belonging to both the destination diagonal 

and W(i,j) row; and       is the Y index of the node belonging to both the 

destination diagonal and W(i,j) row. 

Proof: The proof for this type is similar to the proof of Type 11(a). 

3.2.11.4. Type 11 (d) 

Description: Packets passing through switch W(i,j) as a result of same row nodes 

communicating with nodes with higher index on decreasing diagonal i.e. down 

traffic. 

Count: )')(1( DiagonalRow indexnindex   

Where    is the number of nodes in the diagonal originating traffic,       ; 

              is the position of switch W(i,j) row in the destination diagonal, 

                  ; and          is the position of W(i,j) in the row 

originating traffic,             . 

If diagonal is below main diagonal i.e. 
xy NodeNode   

'1 nnindexL Diagonal   

Else 

1 DiagonalindexL  
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Where       is the X index of the node belonging to both the destination diagonal 

and W(i,j) row; and       is the Y index of the node belonging to both the 

destination diagonal and W(i,j) row. 

Proof: The proof for this type is similar to the proof of Type 11(a). 

3.2.12. Type 12 Packets 

Description: Packets passing through W(i,j) as a result of communication between 

node (k,j) from same column as node W(i,j) and nodes on node (m,j) diagonal 

where 1   k, m   n and i   k   m. 

 

We divide the discussion of Type 12 into four separate sub-types to ease the 

calculation for each of them. The sub-types are listed in the following sub-sections. 

3.2.12.1. Type 12 (a) 

Description: Packets passing through switch W(i,j) as a result of same column 

nodes communicating with nodes with lower index on increasing diagonal i.e. up 

traffic. 

Count: )1)(1(  DiagonalColumn indexindex  
Where    is the number of nodes in the diagonal originating traffic,       ; 

              is the position of switch W(i,j) column in the destination diagonal, 

                  ; and             is the position of W(i,j) in the column 

originating traffic,                . 

If diagonal is above main diagonal i.e. 
xy NodeNoden 1  

DiagonalindexnL   

Else 

DiagonalindexnL  '  

Where       is the X index of the node belonging to both the destination diagonal 

and W(i,j) column; and       is the Y index of the node belonging to both the 

destination diagonal and W(i,j) column. 

Proof: The proof for this type is similar to the proof of Type 11(a). 
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Figure 25: Type 12 example for an increasing diagonal under both up and down 

traffics 

Table 17: Up traffic passing through switch YSolid 

Source → Destination Pass W(i,j) or Not 

XSolid → A Pass 

 

In order to illustrate the Count calculations, in Figure 25, we study the up traffic 

from the nodes on the same column as switch YSolid(              = 2,             = 

2,   = 5,    = 5) i.e. traffic from XSolid to A. Table 18 lists all the communication from 

XSolid to A and whether the packets to A will pass switch YSolid or not. 

Table 18 states that only one packet passes switch YSolid under up traffic (Count = 

1). Also, applying the Count equation, the number of packets passing through switch 

YSolid is one (Count = (2 – 1) * (2 – 1) = 1 * 1 = 1) which matches to the value deduced 

from Table 18. 

3.2.12.2. Type 12 (b) 

Description: Packets passing through switch W(i,j) as a result of same column 

nodes communication with nodes with higher index on increasing diagonal i.e. 

down traffic. 

Count: )')(1( DiagonalColumn indexnindex   

Where    is the number of nodes in the diagonal originating traffic,       ; 

              is the position of switch W(i,j) column in the destination diagonal, 

                  ; and             is the position of W(i,j) in the column 

originating traffic,                . 

If diagonal is below main diagonal i.e. 
xy NodeNoden 1  

'1 nnindexL Diagonal   
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Else 

1 DiagonalindexL  

Where       is the X index of the node belonging to both the destination diagonal 

and W(i,j) column; and       is the Y index of the node belonging to both the 

destination diagonal and W(i,j) column. 

Proof: The proof for this type is similar to the proof of Type 11(a). 

3.2.12.3. Type 12 (c) 

Description: Packets passing through switch W(i,j) as a result of same column 

nodes communication with nodes with lower index on decreasing diagonal i.e. up 

traffic. 

Count: )1)(1(  DiagonalColumn indexindex  
Where    is the number of nodes in the diagonal originating traffic,       ; 

              is the position of switch W(i,j) column in the destination diagonal, 

                  ; and             is the position of W(i,j) in the column 

originating traffic,                . 

If diagonal is below main diagonal i.e. 
xy NodeNode   

DiagonalindexnL   

Else 

DiagonalindexnL  '  

Where       is the X index of the node belonging to both the destination diagonal 

and W(i,j) column; and       is the Y index of the node belonging to both the 

destination diagonal and W(i,j) column. 

Proof: The proof for this type is similar to the proof of Type 11(a). 

3.2.12.4. Type 12 (d) 

Description: Packets passing through switch W(i,j) as result of same column nodes 

communication with nodes with higher index in decreasing diagonal i.e. down 

traffic. 

Count: )')(1( DiagonalColumn indexnindex   

Where    is the number of nodes in the diagonal originating traffic,       ; 

              is the position of switch W(i,j) column in the destination diagonal, 

                  ; and             is the position of W(i,j) in the column 

originating traffic,                . 

If diagonal is above main diagonal i.e. 
xy NodeNode   

'1 nnindexL Diagonal   

Else 

1 DiagonalindexL  

Where       is the X index of the node belonging to both the destination diagonal 

and W(i,j) column; and       is the Y index of the node belonging to both the 

destination diagonal and W(i,j) column. 

Proof: The proof for this type is similar to the proof of Type 11(a). 



 

47 
 

Table 18: Formulas for different traffic types 

Type Formula 

1 
Ejection 

12 n  

2 
Injection 

12 n  

3 
Row 

))(1(2 indexnindex   

4 
Column 

))(1(2 indexnindex   

5 

Up Traffic 








 


SS

indexn
index

'
)1(  

Down Traffic 








 


SS

index
indexn

1
)'(  

6 

Up Traffic 

)
mod)(

1()1(
'











 


n

indexx SS

SSindexx
Qindex  

if diagonal below main diagonal 

xnQ   

else 

xnQ  '  

Down Traffic 

)
mod)(

1()'(
1











 


index

x SS

SSxindex
Qindexn  

if diagonal above main diagonal 
'1 nnxQ   

else 

1 xQ  

7 

Up Traffic 

)
mod)(

1()1(
'











 


n

indexx SS

SSindexx
Qindex  

if diagonal above main diagonal 
xnQ   

else 
xnQ  '  

Down Traffic 

)
mod)(

1()'(
1











 


index

x SS

SSxindex
Qindexn  

if diagonal below main diagonal 
'1 nnxQ   

else 
1 xQ  
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8, 9, 10 

Procedure Count 

Inputs: i, j, SS, Xsrc, Xdst  

Outputs: Count 

// Nodes on diagonal 

for i = 1 to n'  

 // Nodes affected by nodes on diagonal from i to n' 

 for j = 1 to SS  

  // Nodes originating the traffic  

  for index = A to B  

   if (ΔX mod SS ) ϵ (0, j) 

    Count += (i – j) * Multiplier  

   else if (ΔX > j) 

    Count += Multiplier 

 

11 

Up Traffic 

)1)(1(  DiagonalRow indexindex  

if diagonal below main diagonal 

DiagonalindexnL   

else 

DiagonalindexnL  '  

Down Traffic 

)')(1( DiagonalRow indexnindex   

if diagonal above main diagonal 

'1 nnindexL Diagonal   

else 

1 DiagonalindexL  

12 

Up Traffic 

)1)(1(  DiagonalColumn indexindex  

if diagonal above main diagonal 

DiagonalindexnL   

else 

DiagonalindexnL  '  

Down Traffic 

)')(1( DiagonalColumn indexnindex   

if diagonal below main diagonal 

'1 nnindexL Diagonal   

else 

1 DiagonalindexL  

3.2.13. Summary of Packets Count Calculations15 

In this section, we summarize the number of the packets passing through a switch. 

Table 19 shows the number of packets caused by all the types with a step size of SS. 

The variables used in Table 19 are described in Table 20. 

                                                           
15

 The listed equations and pseudo code are for the increasing diagonals only, but the same applies for the 

decreasing diagonals. 
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Table 19: Common variables used in Table 19 

n  Number of row/column nodes - 

'n  Number of diagonal nodes nn  '1  

index / Diagonalindex  Index in diagonal '/1 nindexindex Diagonal   

Rowindex  / Columnindex  Index in row/column Lindexindex ColumnRow  /1  

Table 20: A and B values for up and down traffic 

 Up Traffic Down Traffic 

A i  1 

B 'n  i  

Table 21: Multiplier value for Type 8, Type 9 and Type 10 

Type Up Traffic Down Traffic 

8 1 1 

9 

if diagonal below main diagonal 

indexn  
else 

indexn'  

if diagonal above main diagonal 

'1 nnindex   
else 

1index  

10 

if diagonal above main diagonal 

indexn  
else 

indexn'  

if diagonal below main diagonal 

'1 nnindex   
else 

1index  

Table 22: Values for Type 9 up traffic communication 

A i  

B 'n  

Multiplier 

if diagonal below main diagonal 

indexn  
else 

indexn'  
 

For Type 8, Type 9, and Type 10, we devised a pseudo code to calculate the count 

instead of using formulas it is more readable that way. Table 19 shows a generic code 

for the number of packets passing through a switch W(i,j) for Type 8, Type 9 and Type 

10 based on the values in Table 21 and Table 22. For example, Table 23 shows the 

values for Type 9 up traffic. 

3.3. Proof of Packet Types Completeness 

In this section, we prove that any communication between two nodes falls under 

one of the mentioned 12 types. 
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Table 23: First category cases 

Case # Condition Description 

1 YX   
P moves on the diagonal from S to D. This case causes 

the pattern defined in Type 5. 

2 0X  
P moves on a column from S to D. This case causes 

the pattern defined in Type 4. 

3 0Y  
P moves on a row from S to D. This case causes the 

pattern defined in Type 3. 

4 YX   
P moves on a row till YX   then follows Case 1. 

This case causes the pattern defined in Type 6. 

5 YX   
P moves on a column till YX   then follows Case 

1. This case causes the pattern defined in Type 7. 

Table 24: Second category cases 

Case # Condition Description 

6 YX   

P moves on the diagonal from S to D. The movement on the 

diagonal leads the packet to pass through switches on nearby 

diagonals. This case causes the pattern defined in Type 8. 

7 YX   

P moves on a row till YX   then follows Case 6. This 

case causes two patterns; moving on row causes the pattern 

defined in Type 11 and moving on diagonal causes the pattern 

defined in Type 9. 

8 YX   

P moves on a column till YX   then follows Case 6. This 

case causes two patterns; moving on column causes the 

pattern defined in Type 12 and moving on diagonal causes the 

pattern defined in Type 10. 

 

Lemma  In an nn  mesh, under MMaxFlex, any packet going from a source node 

to a destination node falls under one of the mentioned twelve traffic types. 

Proof  Here, we differentiate the patterns going through W(i,j) into two main 

categories:  

1) The patterns due to moving to nodes on same row, column, or diagonal as 

W(i,j) 

2) The patterns due to moving to nodes on different diagonal than that of 

W(i,j) (i.e. the effect on W(i,j) caused by category one)  

Concerning the first category, consider the possible values for X  w.r.t Y . We 

list the cases in Table 24. 

Now we consider the second category. Beside the patterns in first category, packets 

may pass through a switch as a result of other diagonal communication. This is because 

adjacent diagonal affects nodes other than its own nodes as there is no direct link 

between diagonal nodes. Thus, moving on diagonal will lead to move right-up or left-

down. The effect differs based on the value of X  w.r.t Y  as shown in Table 25. 

Beside the two categories, we have two special cases not related to MaxFlex work; 

Node W(i,j) injecting to all other nodes (this case causes the pattern defined in Type 2), 

and Node W(i,j) receiving from all other nodes (this case causes the pattern defined in 

Type 1). 
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Figure 26: Number of packet passing through sample border and core switches 

over different fixed step size values 

Thus, the above cases cover the 12 mentioned types proving the lemma.  

                                                                                                                                                                      

3.4. Packets Distribution Analysis Results  

In this section, we calculate the number of packets passing through each switch in a 

10x10 2D mesh network using the count equations presented in Section 3.2 using 

different step sizes. We choose some representative switches based on their location in 

the network to represent border switches and core switches. We choose Switch (0, 0), 

Switch (0, 3) and Switch (0, 6) as border switches and Switch (3, 3), Switch (3, 6), 

Switch (5, 5) as core switches. 

Figure 26 shows the number of packets passing through each of the mentioned 

switches with different step sizes. From the figure, we notice different trends; for the 

border nodes, the number of packets passing through the switch increases as the step 

size increases, while for the core switches, the number of packets decreases as the step 

size increases. In other words, the concentration in the central part of network bisection 

is relaxed.  

This is because, as the step size increases, the packet moves in one dimension for 

more steps before alternating the dimension. This movement enables the packet to 

reach farther switches (i.e. switches away from the diagonals) which allows some 

relaxation for the core diagonal switches. 

3.5. Experimental Setup 

In this section, we present the method used to evaluate MMaxFlex. Also, we 

present the model of the used bufferless NoC. Finally, we define the performance 
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metrics used to evaluate the proposed approach. In the next section, we evaluate 

MMaxFlex selection function using different step sizes in terms of the used 

performance metrics. In addition, we calculate an approximate value for the optimal 

step size given a certain dimension. 

3.5.1. Experimental Methodology  

We evaluate the network performance of bufferless NoCs using the General 

purpose Simulator gpNoCsim [39]. The simulator is an open-source, component based 

simulation framework for NoC architectures that is developed entirely in Java. In 

gpNoCsim, we have either a processing node (a message generation or consumption 

points) or a switch connected through bidirectional links. Each switch has a router and a 

controller. gpNoCsim uses the wormhole switching technique. Processing nodes clock 

is synchronized with the switches.  

3.5.2. Interconnection Network Model 

We use the 2D mesh topology of varying size to model the network. Each switch 

has 5 input ports and 5 output ports, including the injection ports. Each of the switch 

latency and link latency is 1 cycle. In our configuration, we assume that each link is 

128-bit wide and each data packet consists of 8 flits, each of which is assumed to have 

128 bits. All packets are of fixed length. For comparing the effect of increasing the step 

size, we use a 10x10 mesh. On the other hand, for calculating the optimal step size 

given the 2D mesh dimension, we use a mesh size varying from 5x5 to 12x12. 

We use synthetic traces to evaluate MaxFlex. Synthetic traces are used for various 

sensitivity analyses, as well as for comparing the different step sizes among each other 

and with other baseline selection functions. Each switch is associated with a processor 

and the destination address of a packet is determined by the statistical process of the 

uniform traffic pattern. Within each simulation there is a warm-up period of 100,000 

cycles. The simulation terminates when 1000,000 packets are received. 

3.5.3. Evaluation Metrics 

Our main performance metrics for system performance evaluation are the average 

packet latency and the average flit deflection count. Packet latency is calculated as the 

time the packet takes to reach the destination (Last Flit Ejection Time – First Flit 

Generation Time) including source queuing time. Flit deflection count is the number of 

times the flit was forced to go through a non-productive port i.e. misroute. 
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Figure 27: Average packet latency for 

different fixed step size values 

 

Figure 28: Average deflection count for 

different fixed step size values 

 

 

Figure 29: Average packet latency for different fixed step sizes at flit injection rate 

= 0.22 flit/cycle/node 

3.6. Simulation Results 

Here we show the results of increasing the step size under MMaxFlex and the 

MaxFlex performance compared with other selection functions. Figure 27 and Figure 

28 show that as the step size increases, both the average packet latency and the average 

deflection count decreases. These results matches the analysis results in Section 3.4, as 

the better traffic distribution showed in the analysis can lead to better link utilization 

which can lead to faster delivery for the packets and hence better packet latency and 
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Figure 30: Average packet latency for 

fixed step size of 8 compared with 

different selection functions 

 

Figure 31: Average deflection count for 

fixed step size of 8 compared with 

different selection functions 

 

less misrouting due to contention. Figure 29 focuses on the cut-off point of the flit 

injection rate of 0.22 flit/cycle/node i.e. the point after which the latency increases 

exponentially. The figure shows that for smaller step sizes, the average packet latency 

is very high (magnitude of thousands of cycles). While for larger step sizes the average 

packet latency is much smaller with the smallest packet latency achieved using step size 

of 8. The average packet latency using larger step sizes is almost equal as all these step 

size values lead to almost the same packet movements. For example, moving from node 

(0, 5) to (5, 10) under step size of 1 leads to moving one step in X then one step in Y till 

the destination is reached, while using a step size of 6 will lead to moving 6 steps in X 

then 6 steps in Y. Since the number of steps remaining in X is less than 6, the packet 

will move as if it uses dimension order routing (DO-XY). The same applies for step 

sizes larger than 6. 

Now, we compare increasing the step size under MaxFlex with other selection 

functions, namely Straight Line selection function and random productive port selection 

function. In the Straight Line selection function, the flit favors the X-dimension 

movement till there are no steps remaining in X-dimension then moves in Y-dimension. 

In the random productive port selection function, the flit randomly chooses from the list 

of productive ports available at each step. Figure 30 and Figure 31 show that increasing 

the fixed step size under MaxFlex leads to better average packet latency and smaller 

deflection count. Specifically, using a fixed step size of 8 enhances the average packet 

latency by around 95% and 99% over using Straight Line selection function and 

random productive port selection function respectively. Also, the average deflection 

count decreases by 38% and 53% compared with Straight Line selection function and 

random productive port selection function respectively.  
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Table 25: Step size to mesh dimension percentage 

Mesh Size Best Step Size Percentage 

5x5 4 80 

6x6 4 66.67 

7x7 5 71.43 

8x8 6 75 

9x9 6 66.67 

10x10 8 80 

11x11 8 72.73 

12x12 9 75 

 

3.7. Estimation of the Value of the Step Size  

In this section, given an nn  mesh, we estimate the value of the step size. In order 

to do this, we simulated the MaxFlex under different 2D mesh sizes varying from 5x5 

to 12x12 and within each network we used step sizes ranging from 1 to n – 1. For 

example, for 7x7 mesh network, we used step sizes ranging from 1 to 6. The results are 

shown in the Table 26. Column 1 represents the mesh size, column 2 represents the best 

step size achieved, and column 3 represents the percentage of the step size to the 

dimension of the mesh. 

Table 26 shows that using a step size with a value ranging from 60% to 80% of the 

2D mesh dimension leads to better network performance. Based on the fixed step size 

analysis and simulation results, we conclude that using a larger value for the step size 

leads to better network performance. This is due to the better distribution of traffic 

among the network switches. 

3.8. Concluding Remarks 

In this chapter, we presented the idea of increasing the used step size under 

MaxFlex selection function. We started by analyzing the uniform traffic distribution 

under MaxFlex. We found that the traffic is divided into 12 different types. We studied 

how increasing the used fixed step size value can affect the overall traffic distribution 

among the NoC switches and links. Our analysis showed that increasing the step size 

helps in relaxing the traffic load on the NoC bisection. To back up our analysis, we 

simulated a 10x10 mesh under different step sizes and other selection functions. Our 

results showed that increasing the step size can lead to an enhancement of 95% and 

38% in both average packet latency and average deflection count respectively. 

Additionally, we simulated 2D meshes of different sizes to get estimation for the value 

of the step size given only the mesh dimension. We found that using 60-80% of the 

mesh dimension leads to better performance in terms of both packet latency and 

deflection count.  
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Chapter 4 : Variable Step Size Maximum Flexibility 

Selection Function 

In Chapter 3, we showed that the value of the step size greatly affect the overall 

performance of the bufferless 2D NoC. As a result, we proposed MMaxFlex selection 

function. MMaxFlex uses step size values greater than one for all the packets in order 

to push the traffic to the NoC borders as a way to increase the links utilization. Also, we 

proposed estimation for the appropriate step size. However, the selection of the step 

size is done at the compilation time. In other words, the value is selected based on the 

user input, and used for all the packets. 

In this chapter, we investigate the effect of using a variable step size under 

MaxFlex selection function. First, we explain the idea behind using variable step size 

values and why it is appealing. Then, we propose different approaches on how to 

calculate the value of the variable step size. Finally, we provide the simulation results 

and explain how the results are related to the fixed step size results. 

The chapter is organized as follows; Section 4.1 provides the motivation behind the 

variable step size idea. In Section 4.2, we explain the proposed approaches and their 

operation. We present the simulation environment and results in Section 4.3. Finally, 

Section 4.4 concludes the chapter. 

4.1. Motivation  

The use of fixed step size MMaxFlex with step size greater than one was shown to 

be effective in redistributing the traffic away from the central part of NoC switches and 

move more towards the border switches. This redistribution had a direct effect on 

decreasing the flits deflection count and thus decreasing the overall average packet 

latency. 

Generally speaking, the idea is to utilize the NoC switches and links more in a way 

that enhances the traffic distribution even better. As a way to change the traffic 

distribution, we assign a different step size for each packet instead of assigning the 

same step size value to all the packets. How to calculate the value of a different step 

size for each packet differs based on the criteria used. We explain the different 

approaches in the next section. 

4.2. Proposed Variable Step Size Approaches 

In this section, we list and explain the different approaches used to calculate the 

variable step size value for     bufferless mesh. The approaches basically falls under 

two categories; the first one deals with the NoC nodes as a standalone modules, while 

the second category divides the NoC into a number of rectangular regions and assign 

each node to a specific region. In other words, we distribute the nodes of the NoC to a 

group of non-interleaving rectangular regions such that each region contains a group of 

nodes (at least one node and up to     nodes). Also, we assign indices to each region 
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Figure 32: 4x4 mesh divided into four 2x2 regions 

in a similar manner to the 2D NoC switches. In Figure 32, we show an example of 4x4 

mesh divided into four regions along with the assigned indices.  

In the following sub-sections, we explain and evaluate five approaches to calculate 

the variable step size. The first approach falls under the first category where we deal 

with the standalone nodes, while the rest of the approaches belong to the second 

category dividing the NoC into regions. The first approach calculates the step size 

based on the distance between the source and destination nodes of the flit. The second 

approach calculates the step size based on the distance between the source and 

destination regions of the flit. The third approach uses MMaxFlex with independent 

variable step sizes for routing inside the region and for routing between regions (i.e. 

in/out region routing). Finally, the fourth approach incorporates the in/out region 

routing with the distance between the source and destination nodes to calculate the step 

size. 

4.2.1. Using the Manhattan distance between NoC nodes (NMDVS) 

This approach aims to assign small step size to near nodes and large step size to 

nodes far from each other. By this approach, we use the information gained from the 

fixed step size analysis to better distribute the traffic by using smaller step size to the 

traffic between nearby nodes. 

In NMDVS, we use the Manhattan distance between the source and destination 

nodes. Specifically, we calculate the variable step size as a percentage of the calculated 

Manhattan distance. 

 

                            
 

Where   is the Manhattan distance between source and destination nodes; and 

           is a customizable variable,                 .   
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Using large step size value for the traffic between nearby nodes is not effective. 

This can be explained by the following; in case of nearby nodes, the distance between 

the source and destination nodes is small, so the difference between the source and 

destination X-dimension or Y-dimension is also small (maximum value is equal to the 

distance between source and destination incase same row or column). Thus, using large 

step size leads to moving similar to using Straight Line selection function which leads 

to losing the freedom granted by MaxFlex. Given this insight and the analysis given in 

Chapter 3, we use smaller step size for the near nodes and larger step for the far nodes 

leading to the diversity we want in the traffic distribution. 

4.2.2. Using the Manhattan distance between NoC regions 

(RMDVS) 

As in NMDVS, this approach aims to assign small step size to near nodes and large 

step size to nodes far from each other. In RMDVS, we apply the regions concept. We 

divide the NoC into group of regions, and then assign each node to one of the regions.  

To calculate the step size, RMDVS approach uses the Manhattan distance between 

the source and destination regions. Specifically, it calculates the step size based on the 

difference between regions indices i.e. XRegion and YRegion. If the nodes are in the same 

region then the difference is zero and the step size is one. Otherwise, if the nodes are in 

different regions, then the step size is calculated based on how near or far are the 

regions.  

 

                       

          |                       | 

          |                       | 

 

Where             is the   index of the source node region;             is the   

index of the source node region;             is the   index of the destination node 

region; and             is the   index of the destination node region.  

 

Near regions most probably leads to smaller difference in the XRegion and YRegion 

indices which leads to smaller step size. On the contrary, far regions lead to larger 

difference and hence larger step size. Also, this approach matches the analysis 

presented in Chapter 3. 

4.2.3. Using In-Region and Out-Region routing (IORVS) 

In this approach, we use the regions concepts in a different way. Similar to the 

RMDVS, we divide the NoC into regions and assign nodes to each region. However, in 

IORVS, we differentiate between the traffic between nodes belonging to the same 

region (in-region routing), and the traffic between nodes from different regions (out-

region routing). In case of in-region routing, we consider each region to be a separate 

smaller NoC that can route the traffic between its own nodes using a step size that fits 

its characteristics. While in out-region routing, we look at the region as a whole unit 

and route the data between the regions using a step size that is tailored to the inter-

region traffic. 
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Based on the value of both in-region and out-region step sizes, the performance of 

the MaxFlex varies. Thus, using the freedom granted by IORVS, we study the different 

behavior between the near nodes traffic and the far nodes traffic under different in-

region and out-region step sizes. Also, we study the effect of the region size on the 

overall performance.  

4.2.4. Using the Manhattan distance between NoC nodes for Out-

Region routing (ORMDVS)  

In this approach, we mix between using the regions concepts as in IORVS with 

using the Manhattan distance between NoC nodes approach as in NMDVS. 

Specifically, we use a fixed step size customized for the in-region routing, and use the 

Manhattan distance between NoC nodes for calculating the out-region step size. 

 

                  

                                           

 

Where         is the Manhattan distance between source and destination regions; 

           is a customizable variable,                 ; and            

is the number of row (or column) nodes in a region. 

  

In other words, ORMDVS uses the idea of assigning the step size as a percentage 

of the distance between the source and destination nodes mentioned in NMDVS, but in 

order to calculate such distance, it uses the Manhattan distance between the regions and 

the region’s size instead of using the Manhattan distance between source and 

destination nodes. It aims to get the advantage of NMDVS and the flexibility of 

IORVS.  

4.3. Simulation Results 

In this section, we adapt the same experimental setup used in Chapter 3 to examine 

the use of the variable step size proposed approaches. First, we evaluate the NMDVS 

approach separately to get an estimate for the value of the percentage to use. Then, we 

evaluate the RMDVS approach and compare it with another formula that performs the 

opposite functions of RMDVS. IORVS is evaluated to study the effect of the region 

size, in addition to differentiate between the traffic between near nodes versus the 

traffic between far nodes. Finally, we present the ORMDVS approach performance 

results. 

To evaluate NMDVS, we assigned a different step size for each packet based on 

the Manhattan distance between the packet's source and destination. For packet P, let 

the Manhattan distance between the source and destination is distance d, the value of 

the step size for P is a percentage of d. We examined different percentage value ranging 

from 10% to 90%. 
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Figure 33: Average packet latency for 

NMDVS using different % values 

 

Figure 34: Average deflection count for 

NMDVS using different % values 

Figure 33 and Figure 34 shows that as the percentage value increases, the average 

packet latency decreases. The best percentage value is about 60% of the distance. Also, 

Figure 33 and Figure 34 show that using higher percentage values degrades the 

performance as it leads to step sizes that can be similar to using a large fixed step size. 

These results matches the results for the fixed step size, as using the percentage value 

of 60% leads to larger step size value for the packets with long distance to go and 

smaller step size for the packets with short distance to go. 

For RMDVS evaluation, we started by presenting another formula, RMDVS` that 

performs the exact opposite of RMDVS. In other words, RMDVS assigns small step 

size for the near nodes communication and large step size for the far nodes 

communication; however, in RMDVS`, by subtracting the differences between the X 

and Y dimensions of the NoC regions, we tend to generate small step size for the far 

nodes traffic and large step size for the near nodes traffic. Specifically, RMDVS` uses 

the following formula to calculate the step size. 

 

   |                 |    

          |                       | 

          |                       | 

 

Where             is the   index of the source node region;             is the   

index of the source node region;             is the   index of the destination node 

region; and             is the   index of the destination node region. 

 

Also, to study the effect of changing the region size under the RMDVS approach, 

we simulated both RMDVS and RMDVS` using 2x2 region size and 5x5 region size 

under 10x10 mesh. We expect RMDVS` to not perform well as it does not conform to 

the aforementioned fixed step size analysis in Chapter 3.  
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Figure 35: Average packet latency for 

RMDVS compared with RMDVS` 

 

Figure 36: Average deflection count for 

RMDVS compared with RMDVS` 

As shown in Figure 35 and Figure 36, RMDVS performance exceeds the 

performance of its opposite formula, RMDVS`, in terms of both average packet latency 

and average deflection count respectively. The superior performance is accounted for 

how RMDVS step size calculation conforms to the analysis presented in Chapter 3. 

RMDVS calculates a large step size for the far node communication, while RMDVS` 

calculates a small step size. As a result, given the analysis in Chapter 3, assigning a 

large step size decreases the concentration on the NoC central switches and moves part 

of the traffic to the borders. Also, RMDVS calculates a small step size in case of near 

nodes communication which produces diversity in distributing the NoC traffic leading 

to better link utilization, thus better packet latency and deflection count. 

Concerning the region size, as shown in both figures, using 2x2 regions resulted in 

better performance than using 5x5 regions. This is because using 2x2 region size 

resulted in 25 regions, while using 5x5 region size resulted in 4 regions only. Increasing 

the number of regions resulted in more fine control in the step size calculation, thus 

better distribution for the values of the calculated step size. 

In IORVS, we divide the NoC into regions, and differentiate between nodes 

communication in the same region and nodes communication between regions in order 

to study the difference between the near nodes traffic and the far nodes traffic, and to 

study the effect of the region size on the overall performance. To evaluate IORVS, we 

simulated 10x10 mesh using 2x2 regions and 5x5 regions. Also, as the performance is 

affected by the in-region step size and out-region step size, we simulated all the 

possible combinations for the in-region and out-region step sizes, In other words, for 

every in-region step size value ranging from one to nine, we used out-region step size 

value ranging from one to nine. Thus, for each region size, we simulated 81 

experiments to cover all the cases (i.e. 162 for both 2x2 and 5x5 regions). 

From Figure 37 to Figure 72, we show the average packet latency and average 

deflection count for each of the 162 experiments. From these figures, concerning far 

nodes traffic, we noted that under any in-region step size value, using a large step size 

for out-region communication leads to better performance under both region sizes. 

Specifically, step size of seven or eight leads to the best performance under the used in-

region step size. This conforms to the analysis and step size estimation done in Chapter 
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Figure 37: Average packet latency for 

different             values under in 

             using 2x2 region size 

 

Figure 38: Average packet latency for 

different             values under in 

             using 5x5 region size 

 

Figure 39: Average deflection count for 

different             values under in 

             using 2x2 region size 

 

Figure 40: Average deflection count for 

different             values under in 

             using 5x5 region size 
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Figure 41: Average packet latency for 

different             values under in 

             using 2x2 region size 

 

Figure 42: Average packet latency for 

different             values under in 

             using 5x5 region size 

 

Figure 43: Average deflection count for 

different             values under in 

             using 2x2 region size 

 

Figure 44: Average deflection count for 

different             values under in 

             using 5x5 region size 
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Figure 45: Average packet latency for 

different             values under in 

             using 2x2 region size 

 

Figure 46: Average packet latency for 

different             values under in 

             using 5x5 region size 

 

Figure 47: Average deflection count for 

different             values under in 

             using 2x2 region size 

 

Figure 48: Average deflection count for 

different             values under in 

             using 5x5 region size 
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Figure 49: Average packet latency for 

different             values under in 

             using 2x2 region size 

 

Figure 50: Average packet latency for 

different             values under in 

             using 5x5 region size 

 

Figure 51: Average deflection count for 

different             values under in 

             using 2x2 region size 

 

Figure 52: Average deflection count for 

different             values under in 

             using 5x5 region size 
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Figure 53: Average packet latency for 

different             values under in 

             using 2x2 region size 

 

Figure 54: Average packet latency for 

different             values under in 

             using 5x5 region size 

 

Figure 55: Average deflection count for 

different             values under in 

             using 2x2 region size 

 

Figure 56: Average deflection count for 

different             values under in 

             using 5x5 region size 
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Figure 57: Average packet latency for 

different             values under in 

             using 2x2 region size 

 

Figure 58: Average packet latency for 

different             values under in 

             using 5x5 region size 

 

Figure 59: Average deflection count for 

different             values under in 

             using 2x2 region size 

 

Figure 60: Average deflection count for 

different             values under in 

             using 5x5 region size 
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Figure 61: Average packet latency for 

different             values under in 

             using 2x2 region size 

 

Figure 62: Average packet latency for 

different             values under in 

             using 5x5 region size 

 

Figure 63: Average deflection count for 

different             values under in 

             using 2x2 region size 

 

Figure 64: Average deflection count for 

different             values under in 

             using 5x5 region size 
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Figure 65: Average packet latency for 

different             values under in 

             using 2x2 region size 

 

Figure 66: Average packet latency for 

different             values under in 

             using 5x5 region size 

 

Figure 67: Average deflection count for 

different             values under in 

             using 2x2 region size 

 

Figure 68: Average deflection count for 

different             values under in 

             using 5x5 region size 
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Figure 69: Average packet latency for 

different             values under in 

             using 2x2 region size 

 

Figure 70: Average packet latency for 

different             values under in 

             using 5x5 region size 

 

Figure 71: Average deflection count for 

different             values under in 

             using 2x2 region size 

 

Figure 72: Average deflection count for 

different             values under in 

             using 5x5 region size 

 

  



 

71 
 

3. It was estimated that using 60% to 80% of the NoC dimension n as a step size 

performs the best under MMaxFlex (         and         ). 

As for the near region traffic, from the figures, the performance varies based on the 

used in-region step size value, and the used region size value. For example, the best 

performance under region size 5x5 is achieved using in-region step size of three. This 

in-region step size for the 5x5 regions also conforms to the estimation done in Chapter 

3 (       ). As for 2x2 regions, the best value is achieved using in-region step size 

of four. However, the performance of all the in-region step size values is almost similar 

as the used region size is small (2x2 regions). As a result, using any in-region step size 

value, ranging from one to nine, leads to a behavior similar to DO routing inside 2x2 

region. For the same reasons, using 5x5 regions, any value for in-region step size larger 

than three leads to similar performance. 

As for the effect of the region size, in the figures (from Figure 37 to Figure 72), the 

size of the region doesn’t have a clear cut effect on IORVS approach. This is due to the 

fact that the calculation of the in-region or out-region step size is not function in the 

region size or the number of regions as was in RMDVS. In other words, for any region 

size used and following the work done in Chapter 3, we can estimate a value for the in-

region step size, and use large step size for out-region step size to achieve the best 

possible performance under the used region size.      

Finally, in ORMDVS approach, we combine the calculation of the variable step 

size in NMDVS approach, and the flexibility of IORVS approach. Specifically, we use 

divide the NoC into regions, use a step size customized for the in-region routing 

behavior, and calculate the out-region step size using a formula similar to what was 

used in NMDVS.  

We simulated 10x10 mesh using 2x2 regions and 5x5 regions. For the percentage 

value, we used 60% as it achieved the best performance under NMDVS. For the in-

region step size, we used different values ranging from one to nine to evaluate the 

effect of changing the in-region step size. The results for 2x2 regions are shown in 

Figure 73 and Figure 74, while the results for 5x5 regions are in Figure 75 and Figure 

76. 

For 2x2 regions, in Figure 73 and Figure 74, the performance under any in-region 

step size is similar with a slight advantage for in-region step size of one. This is due to 

using small region size (2x2 regions). As a result, using any in-region step size value, 

ranging from one to nine, leads to a behavior similar to DO routing inside 2x2 region. 

On the other hand, in Figure 75 and Figure 76, using 5x5 regions leads to worse 

performance than using 2x2 regions. The best performance for 5x5 regions is achieved 

using in-region step size of four due to the step size estimation presented in Chapter 3.  

Under ORMDVS, using 2x2 regions is better than using 5x5 regions as 2x2 regions 

generates more regions than using 5x5 regions (25 regions versus 4 regions). More 

regions means for flexibility in calculating the out-region step size. For example, using 

5x5 regions (4 regions), the distance between regions can be one or two only. Thus, the 

distance estimated between the communicating nodes, based on the used formula, has a 

two values only (five or ten) leading to out-region step size values of three and six only. 

On the other hand, using more regions under 2x2 region size, gives more values for the 

distance between the regions, thus leading to more variability in the calculated out-

region step size.  
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Figure 73: Average packet latency using 

different            values and 60% 

under 2x2 region size 

 

Figure 74: Average deflection count 

using different            values and 

60% under 2x2 region size 

 

Figure 75: Average packet latency using 

different            values and 60% 

under 5x5 region size 

 

Figure 76: Average deflection count 

using different            values and 

60% under 5x5 region size 

Till now, we presented each approach results separately. To evaluate the different 

approaches, we selected the best result achieved under each approach, and compared 

these results with using fixed step size of eight under MMaxFlex. For NMDVS, we 

used 60% as the percentage. For RMDVS, we used 2x2 region size. As for IORVS, we 

selected in-region step size of four and out-region step size of seven under 2x2 region 

size, and in-region step size of three and out-region step size of seven under 5x5 region 

size. Finally for ORMDVS, we used 60% as the percentage and in-region step size of 

one under 2x2 region size. 

As shown in Figure 77 and Figure 78, all the proposed approaches enhances the 

performance over using a fixed step size of eight under MMaxFlex in terms of both 
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Figure 77: Average packet latency for 

different variable step size formulas 

 

Figure 78: Average deflection count for 

different variable step size formulas 

 

average packet latency and average deflection count. This is due to using different step 

size values for the packets instead of fixing the value for all the packets. This variability 

leads to better traffic distribution thus better utilization for the bufferless NoC links. 

From the figures, we note that IORVS approach achieves the least enhancement 

over the fixed step size. Specifically, using 2x2 regions, the enhancement is 7.03% and 

2.23% in terms of average packet latency and average deflection count respectively. 

While using 5x5 regions enhances by 8.3% and 2.79% in terms of average packet 

latency and average deflection count respectively. This small enhancement is due 

minimum variability used in IORVS. IORVS can be seen as an update for using fixed 

step size; however, instead of fixing the step size for all the packets, we use two 

separate fixed values for in-region and out-region routing. 

Also, observing Figure 77 and Figure 78, the performance of NMDVS, RMDVS, 

and ORMDVS is almost similar with the best performance achieved by ORMDVS 

using 2x2 regions. ORMDVS enhances over fixed step size under MMaxFlex by 

33.28% and 8.49% in terms of average packet latency and average deflection count 

respectively. The superiority of these approaches can be seen as a result of the higher 

variability achieved in calculating the step size. Additionally, ORMDVS superior 

enhancement is due to mixing NMDVS and IORVS. Using IORVS granted the 

flexibility in separating the in-region and out-region routing. While using NMDVS 

granted better distribution and variability for calculating the out-region step size. 

4.4. Concluding Remarks  

In this chapter, we presented the idea of varying the used step size under 

MMaxFlex selection function. We started by presenting different approaches for 

calculating the variable step size value. We presented approaches that used the distance 

between the source and destination nodes for calculating the step size. Other 

approaches divided the NoC into smaller regions and separated the in-region and out-

region routing. To test the performance of the proposed formulas, we simulated a 10x10 
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mesh. Our results showed that using any of the proposed approaches achieves better 

results than using fixed step size under MMaxFlex. Specifically, one of the approaches 

lead to an enhancement of 33.28% and 8.49% in terms of average packet latency and 

average deflection count respectively compared with fixed step size of 8 under 

MMaxFlex. 
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Chapter 5 : New Flit Ranking Policies for Deflection-

based Bufferless NoCs 

In Chapter 3 and Chapter 4, we enhanced the bufferless NoC performance via 

selection functions. We investigated increasing and varying the used step size under 

MaxFlex as a way to enhance the links utilization which affects the performance. 

In this chapter, we study the role of using different flit ranking policies on the 

Bufferless NoC performance. Ranking policies determine the order by which the flits 

are served. By changing the order of serving the packets/flits, the performance can 

change in a drastic way.  

First, we explain the importance of ranking policies and why it worth studying. 

Then, we present different policies for ranking the flits. Finally, we experimentally 

evaluate the proposed policies. 

The chapter is organized as follows; Section 5.1 provides the motivation behind 

studying ranking policies. In Section 5.2, we propose new ranking policies. Section 5.3 

simulates and evaluates the proposed ranking policies. Finally, Section 5.4 concludes 

the chapter. 

5.1. Motivation 

During the NoC operation, a 2D mesh NoC switch can receive up to five flits; four 

from the ports connected to its neighboring switches, in addition to one flit injected 

from the node connected to it. Each of these flits needs an output port to reach its 

required destination. As a result, a conflict may arise due to different flits requiring the 

same output port. In order to solve the contention between the different flits, a flit 

ranking policy is used. A flit ranking policy applies a criterion to determine the order of 

serving the incoming flits. In other words, it determines which flit chooses an output 

port first. 

Different ranking policies employ different criteria to order the flits. Subsequently, 

the order of serving the flits differs leading to different arrival patterns for the NoC 

flits. A good ranking policy results in a pattern that minimizes the average latency 

among all the NoC packets. 

In buffered NoCs, if a flit fails to get its required output port, it enters the buffer 

waiting for its turn to pass. Thus, even in case of a weak ranking policy, the flit can still 

wait till its shortest path is free. However, in bufferless NoC, the ranking policies have 

greater effect due to the buffers elimination. If a flit fails to get its productive port, it is 

deflected through a non-productive port as the links are the only buffering resource. 

This unnecessary detours increase the overall packet latency.  

In the next section, we propose new ranking polices and an enhancement tailored 

for bufferless NoCs and MaxFlex. We evaluate the proposed approaches with two well-

known ranking policies discussed in the following sub-sections. 

5.1.1.  Oldest First Ranking Policy (OF) 

The OF ranking policy chooses the age of the flit as its criteria. The age of the flit 

is the number of cycles passed since its generation. OF ensures that there is a total age 



 

76 
 

order among flits and prioritizes older flits. In other words, OF tends to direct the flit 

with higher age to its destination as to not increase the average latency.  

At a certain cycle t, let A be a flit with age Age(A,t), and priority Priority(A,t). Also, 

let B be a flit with age Age(B,t), and priority Priority(B,t). If Age(A,t)   Age(B,t) then 

Priority(A,t)   Priority(B,t). 

5.1.2. Most Deflection First Ranking Policy (MDF) 

MDF ranking policy chooses the deflection count of the flit as the ranking criteria. 

The deflection count of the flit is number of times the flit takes a non-productive port as 

its output port. MDF prioritizes the flits with more deflections. In other words, MDF 

tends to direct the flit with higher deflection count to its destination as to not increase 

the average latency. 

Let A be a flit with deflection count Deflection(A,t), and priority Priority(A,t). Also, 

let B be a flit with deflection count Deflection(B,t), and priority Priority(B,t). If 

Deflection(A,t)   Deflection(B,t) then Priority(A,t)   Priority(B,t). 

5.2. Proposed Flit Ranking Policies 

Based on the results from the fixed/variable step size study in Chapter 3, and from 

a recent bufferless NoC study that discusses the effect of deflections on the overall 

performance [22], we propose ranking policies that tend to decrease the deflection 

count of the NoC flits. The proposed policies favor the flit with more deflections as 

extra detouring for this flit leads to extra delay thus increasing the overall packet 

latency.  

In the following sub-sections, we propose updating the Most Deflections First 

(MDF) policy to use the deflection count of the flit along with its age, and the distance 

between its source and destination. Also, we propose an enhancement that can work 

with the any of the policies. It should be noted that even though the proposed ranking 

policies in this chapter are intended for bufferless NoCs, these policies can also be 

applied to buffered NoCs.  

5.2.1. Deflection Age Ratio Ranking Policy (DAR) 

DAR ranking policy chooses the deflection/age ratio as its criteria. DAR prioritizes 

the flits with higher ratio. OF and MDF policies favor the oldest and most deflected 

respectively, however, the flit may be old or deflected many times because the distance 

between its source and destination is large. Thus, DAR takes into consideration both the 

time the flit has been in the NoC and its deflection count. DAR favors the flits that have 

suffered more deflections during its lifetime in the NoC.  

Let A be a flit with age Age(A,t), deflection count Deflection(A,t), and priority 

Priority(A,t). Also, let B be a flit with age Age(B,t), and delfeciton count Deflection(B,t), 

and priority Priority(B,t). If Deflection(A,t)/Age(A,t)   Deflection(B,t)/Age(B,t) then 

Priority(A,t)   Priority(B,t). 
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5.2.2. Deflection Distance Ratio Ranking Policy (DDR) 

DDR ranking policy chooses the deflection/distance ratio as its criteria. The 

distance is the Manhattan distance between the source and destination of the flit. DDR 

prioritizes the flits with higher ratio. Following the same idea as in DAR, DDR favors 

the flits that have suffered more deflections during the path from its source and 

destination.  

Let A be a flit with distance between its source and destination DistanceA, 

deflection count Deflection(A,t), and priority Priority(A,t). Also, let B be a flit with 

distance between its source and destination DistanceB, delfeciton count Deflection(B,t), 

and priority Priority(B,t). If Deflection(A,t)/DistanceA   Deflection(B,t)/DistanceB then 

Priority(A,t)   Priority(B,t). 

5.2.3. Last Dimension Ranking Policy (LD) 

LD is an enhancement that can work with any of the ranking schemes. It is 

designed to work specifically with bufferless NoCs and MaxFlex selection function. In 

case of competing flits, LD favors the flit that has hops in only one direction. In case of 

a draw, LD uses other ranking policies to break the draw. For example, it two flits are 

competing and one of the flits has only moves left in the X direction, while the other 

still has moves in both X and Y directions, then LD favors the first flit.  

The motivation behind favoring the flit stuck in one direction is that any deflection 

for this flit leads to extra unnecessary detour. This detour needs at least two cycles to 

correct the path of the flit. Thus, if we choose not to deflect this flit, we enhance the 

overall packet latency as we decrease the overall deflection count. 

Here, we present the usage of LD along with MDF and DDR ranking policies as 

draw breakers.     

5.3. Simulation Results 

In this section, we adapt the same experimental setup used in Chapter 3 to evaluate 

the approaches mentioned in the previous section. First, we present the experimental 

results concerning the updated approaches DAR and DDR in contrast to the baseline 

approaches OF and MDF. Then, we evaluate the LD enhancement compared with MDF 

and DDR. 

Figure 79 and Figure 80 compare between the presented ranking policies in terms 

of average packet latency and average deflection count respectively. As shown in both 

figures, all the deflection based policies have a superior performance over the OF 

ranking policy in addition to operating under higher injection rates. Also, in Figure 79, 

the proposed policies DAR and DDR exceed MDF performance in terms of packet 

latency. That is because MDF only focus on the deflections without considering the 

time spent in the NoC or the distance to be covered. DDR has the best performance in 

terms of both packet latency and deflection count as it considers the shortest distance 

between the source and destination of the flit. The shortest distance between the source 

and destination is known and can be calculated upfront. As a result, if a flit suffered 

high deflection count while travelling short distance, it is favored over the flit that was 

deflected the same number of times but while travelling long distance. Thus, factoring 

the distance differentiates between the two flits even though they have the same 
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Figure 79: Average packet latency for 

different ranking policies 

 

Figure 80: Average deflection count for 

different ranking policies 

 

Figure 81: Average packet latency for 

LD enhancement over other ranking 

policies 

 

Figure 82: Average deflection count for 

LD enhancement over other ranking 

policies 

deflection count. Also, the deflection count performance shown in Figure 80 matches 

the packet latency results.  

In order to show how the LD enhancement affects the performance, we simulated 

LD with MDF and DDR as draw breakers. We compared LD performance in contrast 

with MDF and DDR respectively. As shown in Figure 81 and Figure 82, the LD 

enhancement greatly boosts the performance under higher injection rates. Specifically, 

using LD along with MDF under injection rate of 0.24 flit/cycle/node enhances the 

packet latency and the deflection count over MDF by 52.3% and 50.4% respectively. 

While using LD along with DDR enhances the packet latency and the deflection count 

over DDR by 35.6% and 46.7% respectively. 
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To explain this superior performance, we refer to Figure 82. As shown in Figure 

82, the average deflection count for LD along with either MDF or DDR dramatically 

decreases as LD removes any unnecessary detours for the flits. Decreasing the 

deflection count for the flits directly affects the overall packet latency. 

5.4. Concluding Remarks  

In this chapter, we presented new deflection-based flit ranking policies. We first 

explained how bufferless NoCs are more affected by flit ranking polices more than 

buffered NoCs. Also, we explained the idea behind choosing the deflection count as our 

criterion. Then, we updated the MDF ranking policy by incorporating the age and the 

distance between the flit’s source and destination along with the deflection count. In 

addition to updating MDF ranking policy, we proposed the LD enhancement that can 

be used along with other ranking policies to decrease the deflection count and hence 

improve the performance. Finally, we provided an experimental study for the proposed 

polices and the enhancement on a 10x10 mesh versus other well-known ranking 

polices.  
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Chapter 6 : Time-Sensitive Congestion Management 

Mechanisms  

In the previous chapters, we investigated the use of output port selection functions 

and flit ranking policies to enhance the bufferless NoC performance. However, none of 

the proposed approaches directly targets the main roadblock facing bufferless NoC, 

namely the congestion problem.  

In this chapter, we investigate the role of using proper congestion management 

mechanisms on bufferless NoC performance. Congestion can quickly develop under 

bufferless NoCs due to the lack of buffers. By managing the congestion, the 

performance is boosted in a drastic way.  

First, we explain the importance of congestion management and why we choose 

the prevention approach. Then, we present different congestion prevention 

mechanisms. Finally, we simulate and evaluate the proposed approaches.  

The chapter is organized as follows; Section 6.1 discusses the importance of 

managing the congestion specifically in bufferless NoCs. In Section 6.2, we propose 

two different prevention mechanisms. The updated experimental setup and the 

experimental results are presented and discussed in Section 6.3. Finally, Section 6.5 

concludes the chapter. 

6.1. Motivation 

Due to lack of buffers, congestion can quickly develop in bufferless NoC 

preventing it from competing with the buffered NoCs performance especially under 

high injection rates. As mentioned earlier, combining high injection rate with the 

deflection behavior of the bufferless NoC leads to increased traffic volume which 

results in more contention between the flits. As the contention increases, the deflection 

rates increases and the starvation at the source nodes also increases (the source nodes 

are not able to inject new flits). This leads to a collapse in the performance of the NoC. 

Various approaches exist for managing the NoC congestion. These approaches falls 

under one of two categories: detect and control the congestion, or prevent the 

congestion from developing. The first category approaches apply heuristics and monitor 

the NoC performance to detect the congestion once it arises. If congestion is detected, 

these approaches apply a control mechanism to relieve the congested areas. The 

problem with the first category approaches is that if the heuristics used to monitor the 

performance or the actions taken to relieve the congestion are biased or excessive, the 

overall performance of the system is affected.  

On the other hand, the prevention approaches uses extra resources to decrease the 

probability of developing the congestion. The idea is to use the extra resources to 

provide other options for the flits in case of contention under high traffic volume. For 

example, a buffered NoC can use extra buffers to host the flits in case of increased 

traffic volume. In bufferless NoCs, we don’t have the luxury of using buffers, so we 

investigate how to prevent the congestion with the only buffering resource available i.e. 

the NoC links. 
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Figure 83: Using 4x4 mesh instead of 3x3 mesh 

6.2. Proposed Approaches 

In this section, we investigate how to relieve the traffic volume under bufferless 

NoC thus preventing the congestion from developing in the first place. Our goal is to 

operate latency-sensitive applications on bufferless NoCs under high injection rates 

without inducing extra power or chip area usage.  

To be able to do that, we provide more links bandwidth to the flits so that they 

have more freedom in their movement towards their destinations. We propose two 

mechanisms to achieve this freedom. The first approach runs the application mix on 

larger NoCs, while the second approach divides the application mix to smaller subsets 

to be run sequentially.  

6.2.1. Using Larger NoCs (LNoC) 

In the LNoC approach, we propose running the application mix on a larger NoC 

with more nodes, switches, and links. For example, as in Figure 83, instead of running 

the application mix on a 3x3 mesh, we run it on a 4x4 mesh. Specifically, instead of 

running a given application mix on an     mesh and quickly reach congestion at 

injection rate   , we run the same application mix on     mesh and operate under 

injection rate    where          and      .  

The idea behind LNoC is to take advantage of the extra links provided as a result 

of using the larger NoC thus providing extra space for the flits to move with less 

competition with the other flits. Figure 83 shows the extra nodes (switches) and links as 

dotted circles and line respectively. 

6.2.2. Using Sequential Injection (SI) 

In the SI approach, we propose dividing the application mix into smaller subsets 

where only a subset of the NoC nodes is allowed to inject it. Then, instead of running 
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Figure 84: Example of two phase sequential injection 

and injecting all the applications traffic at the same run, we divide the injection into 

sequential runs. In other words, we run the smaller application subsets sequentially on 

the whole NoC. Figure 84 shows an example for two phase injection. In the example, 

four nodes inject their traffic during the first phase. After receiving phase one injected 

traffic, the rest of the nodes (twelve nodes) inject their traffic into the NoC. 

By doing that, we basically divide the problem of running the given application 

mix to a group of smaller application mixes that we can run in sequence. The smaller 

application mix, which results in smaller traffic volume, in combination with the 

sequential operation leads to injecting less data into the NoC in each smaller run which 

directly affects the deflection count and the packet latency in a positive way. 

6.3. Simulation Results 

In this section, we adapt the same experimental setup in Chapter 3; however, we 

change the termination condition for each run. We simulate a 10x10 mesh; however, 

instead of having a warm-up period of 100,000 cycles, and termination after receiving 

1000,000 packets, we remove the warm-up period, inject 10,000 packets per node and 

terminates when all these packets are received. 

We evaluate each of the proposed prevention mechanisms separately. We start by 

evaluating the LNoC approach in two ways. First, we compare the performance of 

running fifteen nodes in different mesh sizes, specifically, 3x5 mesh, 5x3 mesh, and 

4x4 mesh with one extra node (switch). Second, we evaluate the effect of placing the 

extra nodes by simulating 10x10 mesh and change the number and the position of the 

extra nodes (switches). Concerning the SI approach evaluation, we simulate 10x10 

mesh to study the effect of the number of nodes in each phase and their position in the 

NoC.  

 



 

83 
 

 

Figure 85: Average packet latency for 

fifteen nodes in different mesh sizes 

 

Figure 86: Average deflection count for 

fifteen nodes in different mesh sizes 

 

To evaluate the LNoC approach, we considered an application that uses fifteen 

nodes only and we arrange the nodes in three different mesh sizes: 3x5 mesh, 5x3 

mesh, and 4x4 mesh with one extra node. We used MMaxFlex with step size of one to 

study the effect of using different arrangements and extra node(s). As shown in Figure 

85 and Figure 86, using 4x4 mesh resulted in better performance in both average packet 

latency and average deflection count. The enhancement is accounted for the use of 

extra node (switch) and the links connected to it which provided extra freedom for the 

flits to reach their destinations. Specifically, using an extra node instead of the required 

fifteen nodes in 3x5 mesh enhances the average packet latency and the average 

deflection count at flit injection rate 0.48 flit/cycle/node by 98.85% and 31.07% 

respectively. Also, from both figures, we notice that using 3x5 mesh is better that using 

5x3 mesh in both performance metrics. This is due to the default behavior of MaxFlex, 

namely, moving on X-dimension first then on Y-dimension. Thus, as the number of 

columns in 5x3 mesh is less than the number of columns in 3x5 mesh (three versus 

five), the flits have more freedom to move in the X-dimension in case of 3x5 mesh than 

in case of 5x3 mesh.  

The previous experiment did not study the number of the extra nodes used and 

their placement in the NoC, so we simulated 10x10 mesh and varied the number of 

extra nodes and changed their location from border nodes to central nodes. We 

compared using all the nodes in 10x10 mesh with the following: 90 nodes with 10 extra 

nodes placed as border nodes, 90 nodes with 10 extra nodes placed as central (core) 

nodes, 80 nodes with 20 extras nodes as central nodes, and 50 nodes with 50 extra 

nodes placed in the even columns of the 10x10 mesh. All of the previous experiments 

were simulated under MMaxFlex with step size of eight. 

As shown in Figure 87 and Figure 88, using any extra nodes enhanced the 

performance over using all the 10x10 mesh nodes. This is also a result of the extra 

space provided for the flits in case of using extra nodes. For example, using only 90 

nodes for injecting traffic instead of the provided 100 nodes leaves 10 switches in 

addition to their links to help in forwarding the traffic. The extra links works as extra 

roads for the flits to move.  
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Figure 87: Average packet latency for 

different number of extra nodes in 

different locations in 10x10 mesh 

 

Figure 88: Average deflection count for 

different number of extra nodes in 

different locations in 10x10 mesh 

Also, Figure 87 and Figure 88 presented the effect of the number of extra nodes 

and their placement. As the number of extra nodes increases, both the average packet 

latency and the average deflection count decreases. This is because using more extra 

nodes leads to more space for the flits to reach their destination. Concerning the 

placement of the extra nodes, Figure 87 and Figure 88 shows the difference between 

using 10 extra nodes placed on the border of the NoC and using 10 extra nodes placed 

in the center of the NoC. As in both figures, placing the extra nodes in the center of the 

NoC enhanced the performance over placing them on the border in terms of average 

packet latency, average deflection count, and the flit injection rate. The enhancement is 

due to the fact that the central switches are responsible for more traffic forwarding and 

handling than the border switches, thus placing the extra nodes in the center frees the 

central switches for forwarding only and leaves the injection for the rest of the nodes.     

Concerning the SI approach evaluation, we used two phase sequential injection 

with different number of nodes at each phase. Also, we changed the location of the 

nodes in each phase to study the effect of the nodes placement. By two phase sequential 

injection, we mean that we divide the NoC nodes into two groups that take turn in 

injecting their traffic. For evaluation, we compared injecting the traffic from all the 

nodes in 10x10 mesh as one phase with the following: two phase with 90 nodes in the 

first phase and 10 nodes placed as border nodes in the second phase, two phase with 90 

nodes in the first phase and 10 nodes placed as central nodes in the second phase, and 

two phase with 80 nodes in the first phase and 20 nodes placed as central nodes in the 

second phase. All of the previous experiments were simulated under MMaxFlex with 

step size of eight. 

As shown in Figure 89 and Figure 90, using two phase SI injection enhances the 

performance over using one phase injection in terms of the used performance metrics. 

Specifically, in Figure 90, the average deflection count decreases as ratio between the 

number of nodes in each phase increases. This can be explained as in LNoC approach, 

namely, dividing the nodes evenly between the phases lead to less nodes injecting in 

each phase which lead to less competition between the flits, hence less deflections. As 

for the packet latency, increasing the ratio between the number of nodes in each phase 
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Figure 89: Average packet latency for 

two phase SI using different number of 

nodes in different locations in 10x10 

mesh 

 

Figure 90: Average deflection count for 

two phase SI using different number of 

nodes in different locations in 10x10 

mesh 

resulted in better average latency and achieves higher flit injection rates as shown in 

Figure 89.  

As for the nodes placement, changing the location of nodes from the border of the 

NoC to the center of the NoC decreased the average packet latency and the average 

deflection count by 98.36% and 32.2% respectively. This enhancement is accounted to 

the same reasons as in LNoC. Specifically, the central switches forward and handle 

more traffic than the border switches, thus separating the center nodes injection in 

different phase frees the center of the NoC to only forward the traffic of the rest of the 

nodes. 

6.4. Concluding Remarks 

In this chapter, we presented the idea of using proper congestion prevention 

mechanisms in bufferless NoCs. Also, we presented two prevention mechanisms, 

LNoC and SI, and idea behind each of them. Each of the two approaches provided more 

space for the flits to move in the NoC thus less contention between the flits. To test the 

performance of the proposed approaches, we simulated a 10x10 mesh. Our results 

showed that our proposed mechanisms resulted in better performance in terms of both 

average packet latency and average deflection count compared with fixed step size of 8 

under MMaxFlex.   
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Chapter 7 : Discussion and Conclusion  

In this thesis, we were concerned with pushing the boundaries of using bufferless 

NoCs. In other words, how bufferless NoCs can achieve a performance, packet latency 

and deflection count, similar to buffered NoCs under higher injection rates but with the 

added benefit of less power and area. We first focused on using the selection functions 

to achieve our goal. Specifically, we investigated using larger and variable step sizes 

under MaxFlex selection function to enhance the traffic distribution and hence the 

performance. Our analytical and experimental work showed that using larger step size 

values led to better performance figures. Also, using variable step size for each packet 

instead of fixing the value for all packets led to better traffic distribution which resulted 

in enhanced performance. Then, we shifted to investigate the usage of different ranking 

policies under MaxFlex to boost the performance enhancement. We tailored our 

proposed policies to focus on decreasing the flits’ deflections as enhancing the 

deflection count should result in better packet latency. Finally, we looked into easing 

the congestion problem in bufferless NoCs. We wanted to prevent the congestion 

instead of detecting and controlling it later. Our prevention mechanisms allowed the 

flits to have more link bandwidth while moving to their destinations. We achieved that 

by using extra resources and/or organizing the injection of the running latency-sensitive 

applications. Our work in this part showed a huge enhancement in both the packet 

latency and the deflection count. 

7.1. Future Work  

We can extend our work in different directions. First, we can investigate the proper 

size for the regions based on the overall NoC size as we only investigated the usage of 

regions in determining the variable step size value. Also, we can look into other 

formulas to determine the variable step size. Additionally, the concept of dividing the 

NoC into regions can be extended to other aspects in NoC not only for the variable step 

size. For example, regions can be used to enhance the performance on the application 

level by assigning different applications to different regions and based on each 

application we can customize each region. Second, we can extend our congestion 

mechanisms to consider throughput-sensitive applications like GPGPUs in addition to 

latency-sensitive applications. Finally, we want to investigate the effect of absorbing 

and re-injecting the NoC traffic via “Sink Nodes” as an approach to ease congestion 

instead of using source throttling as most of the presented work in the literature 

proposed.  

Beside the proposed extensions, we can investigate the bufferless NoCs usage in 

other hot topics. One of the current hot topics related to NoCs is the usage of die 

stacking technologies to incorporate memory stacks inside the chip. Currently, instead 

of using 3D stacking, researchers are investigating the usage of 2.5D stacking i.e. 

silicon interposer. In 2.5D stacking, instead of adding the memory or other processor 

die on the top of the base processor die, the silicon interposer is built to be large enough 

to hold the processor die and the memory stacks surrounding the die. The interposer is a 

layer rich in communication resources which can be harvested to connect several 

components in the chip with extra cost. Recent works proposed the usage of the silicon 

interposer instead of 3D stacking. The 2.5D stacking presents several challenges in 
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designing the NoC to support the higher memory bandwidth required. We can look into 

using the bufferless NoC in the design to harvest the underlying rich interposer without 

the need to add extra buffers. Also, both 3D and 2.5D technologies can be investigated 

to see how using the bufferless NoC can enhance the overall design.  

Also, recent works investigated the usage of random topologies for NoCs. They 

showed that random topologies provide better scalability in terms of network diameter 

and provide inherent load balancing. We can look into using the bufferless NoC design 

with these random topologies.  
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Appendix A: 2D Mesh Terminologies 

In this appendix, we explain the concept of main diagonal, and how to differentiate 

between the increasing and decreasing diagonals in     mesh. Also, we explain how 

to determine if a certain node is above or below the main diagonal. 

 

 

Figure 91: Main increasing and decreasing diagonals in 5x5 mesh 

We start by defining the main diagonal concept in     mesh. The main diagonal 

is the longest diagonal in a given     mesh. In other words, it is the diagonal with   

nodes on it.  All other diagonals in     mesh contains less than   nodes. Figure 91 

shows an example of main diagonals in 5x5 mesh.   

Also, we differentiate between increasing and decreasing diagonals in     mesh. 

Figure 91 shows both of the diagonal types. In the decreasing diagonal, both the X and 

Y indices increases for each node along the diagonal. In contrast, the X index increases 

while the Y index decreases for each node along the increasing diagonal. A typical 2D 

mesh node belongs to an increasing diagonal as well as a decreasing diagonal but not 

necessarily of same size. For example, node P3 in Figure 91 belongs to the main 

decreasing diagonal and to an increasing diagonal with three nodes.  

To determine if a node is above or below the main diagonal, we study the slope of 

a virtual line on which the node lays. Also, we shall differentiate between the 

increasing and decreasing diagonal cases. For example, in Figure 91, to determine if 

nodes P1 and P2 are above the main decreasing diagonal, we compare between the 

slopes of lines AD and AP1, and AP2. 
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Since                 , then node P1 is below the main decreasing diagonal 

(i.e. line AD). Also, since                 , then node P2 is above the main 

decreasing diagonal.  

Also, we can use the node X and Y indices to determine if a node is above or below 

the main diagonal. As in the previous method, we differentiate between increasing and 

decreasing diagonals. Figure 91 shows the nodes indices in both       and        
   formats. For the decreasing diagonal, if    , then the node is below the main 

decreasing diagonal; else the node is above the main decreasing diagonal. For the 

increasing diagonal,        , then the node is below the main increasing 

diagonal; else the node is above the main increasing diagonal. For example, node 

P1          has    , then node P1 is below the main decreasing diagonal. 

Also, node P3              has        , then the node is above the 

main increasing diagonal. 
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 ممخصال

رقاقة تشكل العمود الفقري -عمى-مع وصول الأنظمة متعددة المعالجات، بدأت الشبكة
رقاقة استيلاكيا العالى -عمى-المعالج الدقيق. و لكن يحد أداء الشبكةللاتصال داخل رقاقة 

رقاقة -عمى-لمطاقة و لمساحة الرقاقة. كحل لمحد من استيلاك الطاقة والمساحة، ظيرت الشبكة
رقاقة الغيرُ مُخٓز ِّنة عناصر تخزين تستخدم لتوجيو حزم -عمى-الغيرُ مُخٓز ِّنة. ازالت الشبكة

م في تدفقيا وتتعامل مع التنافس عمى مخارج التوجيو باستخدام إسقاط الحزمة البيانات و/أو التحك
 من الشبكة أو تغيير مسار الحزمة بعيدا عن اقصر مسار.

رقاقة الغيرُ -عمى-في ىذه الأطروحة، نحن نركز عمى تحسين أداء الشبكة
صول وتقميص عدد عن طريق تقميص الوقت اللازم لمو  لمتطبيقات ذات الحساسية لموقت مُخٓز ِّنة

 مخارج توجيو حزم الانحرافات. تم تقسيم الأطروحة لتركز عمى ثلات محاور. أولًا، كيفية اختيار

البيانات. ثانياً، كيفية ترتيب حزم البيانات في حالة التنافس عمى مخرج توجيو. أخيراً، كيفية 
 البيانات. الازدحام في الشبكة في ظل ارتفاع معدل تدفق حزم تخفيف
لًا، نقدم دراسة لإختيار مخارج توجيو حزم البيانات بقدر عالي من المرونة باستخدام قيم أو 

ثابتة و متغيرة لمخطوة المستخدمة. تستخدم ىذه الطريقة ذات المرونة العالية لانيا تعمل عمى 
م نقدم دراسة تحميمية لحركة مرور حز  زيادة الاختيارات المتاحة لحزم البيانات. في ىذا الجزء،

بقدر عالى  حزم البياناترقاقة الغيرُ مُخٓز ِّنة التى تختار مخارج توجيو -عمى-البيانات في الشبكة
من المرونة باستخدام قيم مختمفة لمخطوة المستخدمة. تشير نتائج المحاكاة أنو مع قيم معينة 

جيو ٪ مقارنة باختيار مخارج التو 79بنسبة  حزم البياناتلمخطوة، يمكن تخفيض وقت وصول 
 بشكل مستقيم. الدراسة التحميمية المقدمة توضح تفوق النتائج التجريبية.

التي تركز عمى تخفيض عدد انحرافيا.  حزم البياناتثانياً، نقدم طرق مختمفة لترتيب خدمة 
بنسبة  حزم البياناتو تبين نتائج المحاكاة أن بعض الطرق يمكن أن تقمل من وقت وصول 

 اسة اختيار الاقدم.٪ مقارنة بسي85تصل إلى 
و أخيراً، نوجو اىتمامنا لمتخفيف من تأثير الازدحام في الشبكة في ظل ارتفاع معدل تدفق 
حزم البيانات. نقترح اسموبين لمنع اسباب الازدحام. و تيدف أول طريقة لتشغيل التطبيقات عمى 

تدفقة لسمسمة من الأحمال الم حزم البياناتالشبكة باستخدام موارد إضافية. الطريقة الثانية تقسم 
بنسبة تصل  حزم البياناتالأخف. وتبين نتائج المحاكاة أن الطرق المقترحة تعزز وقت وصول 

 .حزم البيانات٪، بالإضافة إلى رفع معدل تدفق 16إلى 
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